IMPROVEMENT OF WHEAT PRODUCTION THROUGH GENETIC AND ENVIRONMENTAL INTERACTIONS

Authors

  • A ABBAS Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan Author
  • AU REHMAN Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan Author
  • T ALI Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan Author
  • A SAMI Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan Author
  • MZ HAIDER Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan Author

Keywords:

Environmental factor, Microbes, Sustainability, GWAS, QTL mapping

Abstract

The effect of genetics and environmental factors on wheat production and the necessity for researchers to find genetic sources that can survive changing environmental variables to maximize crop yield. According to previous studies, despite the genetic history of the cultivated variety, drought, high salt, heat, infections, and microbes affect wheat development and yield. Climate change can provide unexpected weather that harms crop output, threatening agricultural sustainability. Researchers are exploring genotyping, phonological traits, GWAS, and QTL mapping to boost crop output and fulfill population needs. Breeding and genetic modification are essential for wheat production due to a growing population, changing climate, and limited planted areas. The article also mentioned weighing 1000 grains or kg per hectare to measure yield.

Downloads

Download data is not yet available.

References

Abobatta, W. F. (2020). Plant responses and tolerance to combined salt and drought stress. Salt and Drought Stress Tolerance in Plants: Signaling Networks and Adaptive Mechanisms, 17-52.

Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez, J. A. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy, 7(1), 18.

Ahmad, M., Ali, Q., Hafeez, M., & Malik, A. (2021). Improvement for biotic and abiotic stress tolerance in crop plants. Biological and Clinical Sciences Research Journal, 2021(1).

Ali, M. J. (2017). Investigation of yield, yield components and primary quality characteristics of some bread wheat (Triticum aestivum L.) genotypes.

Ali, Q., Ahsan, M., Ali, F., Aslam, M., Khan, N. H., Munzoor, M., Mustafa, H. S. B., & Muhammad, S. (2013). Heritability, heterosis and heterobeltiosis studies for morphological traits of maize (Zea mays L.) seedlings. Advancements in Life Sciences, 1(1).

Ali, Q., Ahsan, M., Kanwal, N., Ali, F., Ali, A., Ahmed, W., Ishfaq, M., & Saleem, M. (2016). Screening for drought tolerance: comparison of maize hybrids under water deficit condition. Advancements in Life Sciences, 3(2), 51-58.

Alipour, H., Bihamta, M. R., Mohammadi, V., Peyghambari, S. A., Bai, G., & Zhang, G. (2017). Genotyping-by-sequencing (GBS) revealed molecular genetic diversity of Iranian wheat landraces and cultivars. Frontiers in Plant Science, 8, 1293.

Antar, M., Lyu, D., Nazari, M., Shah, A., Zhou, X., & Smith, D. L. (2021). Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renewable and Sustainable Energy Reviews, 139, 110691.

Arzani, A., & Ashraf, M. (2017). Cultivated ancient wheats (Triticum spp.): A potential source of health‐beneficial food products. Comprehensive Reviews in Food Science and Food Safety, 16(3), 477-488.

Asif, S., Ali, Q., & Malik, A. (2020). Evaluation of salt and heavy metal stress for seedling traits in wheat. Biological and Clinical Sciences Research Journal, 2020(1).

Asseng, S., Kassie, B. T., Labra, M. H., Amador, C., & Calderini, D. F. (2017). Simulating the impact of source-sink manipulations in wheat. Field Crops Research, 202, 47-56.

Beres, B. L., Hatfield, J. L., Kirkegaard, J. A., Eigenbrode, S. D., Pan, W. L., Lollato, R. P., Hunt, J. R., Strydhorst, S., Porker, K., & Lyon, D. (2020). Toward a better understanding of genotype× environment× management interactions—a global wheat initiative agronomic research strategy. Frontiers in Plant Science, 11, 828.

Beres, B. L., Rahmani, E., Clarke, J. M., Grassini, P., Pozniak, C. J., Geddes, C. M., Porker, K. D., May, W. E., & Ransom, J. K. (2020). A systematic review of durum wheat: Enhancing production systems by exploring genotype, environment, and management (G× E× M) synergies. Frontiers in Plant Science, 11, 568657.

Bhadra, P., Maitra, S., Shankar, T., Hossain, A., Praharaj, S., & Aftab, T. (2022). Climate change impact on plants: Plant responses and adaptations. In Plant perspectives to global climate changes (pp. 1-24). Elsevier.

Bhanu, A., Singh, M., Srivastava, K., & Hemantaranjan, A. (2016). Molecular mapping and breeding of physiological traits. Adv. Plants Agric. Res, 3(00120), 10.15406.

Bhattacharjya, S., Bhaduri, D., & Sahu, A. (2018). Arbuscular mycorrhizal fungi: a potential tool for enhancing crop productivity in salt affected soil. International Journal of Agriculture, Environment and Biotechnology, 11(6), 871-880.

Chakraborty, K., Basak, N., Bhaduri, D., Ray, S., Vijayan, J., Chattopadhyay, K., & Sarkar, R. K. (2018). Ionic basis of salt tolerance in plants: nutrient homeostasis and oxidative stress tolerance. Plant nutrients and abiotic stress tolerance, 325-362.

Daryanto, S., Wang, L., & Jacinthe, P.-A. (2017). Global synthesis of drought effects on cereal, legume, tuber and root crops production: A review. Agricultural Water Management, 179, 18-33.

Dassanayake, M., & Larkin, J. C. (2017). Making plants break a sweat: the structure, function, and evolution of plant salt glands. Frontiers in Plant Science, 8, 406.

Dogan, M. (2020). Effect of salt stress on in vitro organogenesis from nodal explant of Limnophila aromatica (Lamk.) Merr. and Bacopa monnieri (L.) Wettst. and their physio-morphological and biochemical responses. Physiology and molecular biology of plants, 26, 803-816.

dos Santos, T. B., Ribas, A. F., de Souza, S. G. H., Budzinski, I. G. F., & Domingues, D. S. (2022). Physiological responses to drought, salinity, and heat stress in plants: a review. Stresses, 2(1), 113-135.

Dwivedi, S. L., Stoddard, F. L., & Ortiz, R. (2020). Genomic-based root plasticity to enhance abiotic stress adaptation and edible yield in grain crops. Plant Science, 295, 110365.

El Sabagh, A., Hossain, A., Barutçular, C., Iqbal, M. A., Islam, M. S., Fahad, S., Sytar, O., Çiğ, F., Meena, R. S., & Erman, M. (2020). Consequences of salinity stress on the quality of crops and its mitigation strategies for sustainable crop production: an outlook of arid and semi-arid regions. Environment, climate, plant and vegetation growth, 503-533.

Enghiad, A., Ufer, D., Countryman, A. M., & Thilmany, D. D. (2017). An overview of global wheat market fundamentals in an era of climate concerns. International Journal of Agronomy, 2017.

Feller, U. (2016). Drought stress and carbon assimilation in a warming climate: Reversible and irreversible impacts. Journal of Plant Physiology, 203, 84-94.

Fróna, D., Szenderák, J., & Harangi-Rákos, M. (2019). The challenge of feeding the world. Sustainability, 11(20), 5816.

Furbank, R. T., Jimenez‐Berni, J. A., George‐Jaeggli, B., Potgieter, A. B., & Deery, D. M. (2019). Field crop phenomics: enabling breeding for radiation use efficiency and biomass in cereal crops. New Phytologist, 223(4), 1714-1727.

Ghafoor, M., Ali, Q., & Malik, A. (2020). Effects of salicylic acid priming for salt stress tolerance in wheat. Biological and Clinical Sciences Research Journal, 2020(1).

Hasan, M. N., Bhuiyan, F. H., Hoque, H., Jewel, N. A., Ashrafuzzaman, M., & Prodhan, S. H. (2022). Ectopic expression of Vigna radiata's vacuolar Na+/H+ antiporter gene (VrNHX1) in indica rice (Oryza sativa L.). Biotechnology Reports, 35, e00740.

Hu, W., Lu, Z., Meng, F., Li, X., Cong, R., Ren, T., Sharkey, T. D., & Lu, J. (2020). The reduction in leaf area precedes that in photosynthesis under potassium deficiency: the importance of leaf anatomy. New Phytologist, 227(6), 1749-1763.

Ilyas, M., Nisar, M., Khan, N., Hazrat, A., Khan, A. H., Hayat, K., Fahad, S., Khan, A., & Ullah, A. (2021). Drought tolerance strategies in plants: a mechanistic approach. Journal of Plant Growth Regulation, 40, 926-944.

Iqra, L., Rashid, M. S., Ali, Q., Latif, I., & Mailk, A. (2020). Evaluation for Na+/K+ ratio under salt stress condition in wheat. Life Sci J, 17(7), 43-47.

Isayenkov, S. V., & Maathuis, F. J. (2019). Plant salinity stress: many unanswered questions remain. Frontiers in Plant Science, 10, 80.

Kaur, H., Kohli, S. K., Khanna, K., & Bhardwaj, R. (2021). Scrutinizing the impact of water deficit in plants: Transcriptional regulation, signaling, photosynthetic efficacy, and management. Physiologia Plantarum, 172(2), 935-962.

Kondić-Špika, A., Trkulja, D., Brbaklić, L., Mikić, S., Glogovac, S., Johansson, E., Alemu, A., Chawade, A., Rahmatov, M., & Ibba, M. I. (2023). Marker-assisted selection for the improvement of cereals and pseudocereals. In Developing Sustainable and Health Promoting Cereals and Pseudocereals (pp. 253-283). Elsevier.

Kumar, A., Sandhu, N., Yadav, S., Pradhan, S. K., Anandan, A., Pandit, E., Mahender, A., & Ram, T. (2017). Rice varietal development to meet future challenges. In The future rice strategy for India (pp. 161-220). Elsevier.

Kumaraswamy, S., & Shetty, P. (2016). Critical abiotic factors affecting implementation of technological innovations in rice and wheat production: a review. Agricultural reviews, 37(4).

Li, Y., Cui, Z., Ni, Y., Zheng, M., Yang, D., Jin, M., Chen, J., Wang, Z., & Yin, Y. (2016). Plant density effect on grain number and weight of two winter wheat cultivars at different spikelet and grain positions. PloS one, 11(5), e0155351.

Liliane, T. N., & Charles, M. S. (2020). Factors affecting yield of crops. Agronomy-climate change & food security, 9.

Mariani, L., & Ferrante, A. (2017). Agronomic management for enhancing plant tolerance to abiotic stresses—drought, salinity, hypoxia, and lodging. Horticulturae, 3(4), 52.

Mathan, J., Bhattacharya, J., & Ranjan, A. (2016). Enhancing crop yield by optimizing plant developmental features. Development, 143(18), 3283-3294.

McAfee, A. (2019). More from less: The surprising story of how we learned to prosper using fewer resources—And what happens next. Scribner.

Mirzaghaderi, G., & Mason, A. S. (2019). Broadening the bread wheat D genome. Theoretical and Applied Genetics, 132, 1295-1307.

Moore, J. K., Manmathan, H. K., Anderson, V. A., Poland, J. A., Morris, C. F., & Haley, S. D. (2017). Improving genomic prediction for pre‐harvest sprouting tolerance in wheat by weighting large‐effect quantitative trait loci. Crop Science, 57(3), 1315-1324.

Muqadas, S., Ali, Q., & Malik, A. (2020). Genetic association among seedling traits of Zea mays under multiple stresses of salts, heavy metals and drought. Biological and Clinical Sciences Research Journal, 2020(1).

Mwando, E. K. (2021). The genetics of barley (Hordeum vulgare) salinity tolerance during germination and the instantaneous seedling endurance Murdoch University].

Naseem, S., Ali, Q., & Malik, A. (2020). Evaluation of maize seedling traits under salt stress. Biological and Clinical Sciences Research Journal, 2020(1).

Nawaz, A., Haseeb, A., Malik, H., Ali, Q., & Malik, A. (2020). Genetic association among morphological traits of Zea mays seedlings under salt stress. Biological and Clinical Sciences Research Journal, 2020(1).

Norman, A., Taylor, J., Tanaka, E., Telfer, P., Edwards, J., Martinant, J.-P., & Kuchel, H. (2017). Increased genomic prediction accuracy in wheat breeding using a large Australian panel. Theoretical and Applied Genetics, 130, 2543-2555.

Petronaitis, T., Simpfendorfer, S., & Hüberli, D. (2021). Importance of Fusarium spp. in wheat to food security: A global perspective. Plant diseases and food security in the 21st century, 127-159.

Platten, J. D., Cobb, J. N., & Zantua, R. E. (2019). Criteria for evaluating molecular markers: Comprehensive quality metrics to improve marker-assisted selection. PloS one, 14(1), e0210529.

Rampa, F., Lammers, E., Linnemann, A., Schoustra, S., & de Winter, D. (2020). Pathways to improved food and nutrition security of the poor: The promise of African indigenous foods and technologies.

Raza, A., Mehmood, S. S., Shah, T., Zou, X., Yan, L., Zhang, X., & Khan, R. S. A. (2019). Applications of molecular markers to develop resistance against abiotic stresses in wheat. Wheat Production in Changing Environments: Responses, Adaptation and Tolerance, 393-420.

Sallam, A., Alqudah, A. M., Dawood, M. F., Baenziger, P. S., & Börner, A. (2019). Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research. International journal of molecular sciences, 20(13), 3137.

Sarwar, M., Anjum, S., Alam, M. W., Ali, Q., Ayyub, C., Haider, M. S., Ashraf, M. I., & Mahboob, W. (2022). Triacontanol regulates morphological traits and enzymatic activities of salinity affected hot pepper plants. Scientific reports, 12(1), 3736.

Sarwar, M., Anjum, S., Ali, Q., Alam, M. W., Haider, M. S., & Mehboob, W. (2021). Triacontanol modulates salt stress tolerance in cucumber by altering the physiological and biochemical status of plant cells. Scientific reports, 11(1), 24504.

Sehgal, A., Sita, K., Siddique, K. H., Kumar, R., Bhogireddy, S., Varshney, R. K., HanumanthaRao, B., Nair, R. M., Prasad, P. V., & Nayyar, H. (2018). Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Frontiers in Plant Science, 9, 1705.

Shadrin, A. A., Kaufmann, T., van der Meer, D., Palmer, C. E., Makowski, C., Loughnan, R., Jernigan, T. L., Seibert, T. M., Hagler, D. J., & Smeland, O. B. (2021). Vertex-wise multivariate genome-wide association study identifies 780 unique genetic loci associated with cortical morphology. Neuroimage, 244, 118603.

Shafique, F., Ali, Q., & Malik, A. (2020). Effects of heavy metal toxicity on maze seedlings growth traits. Biological and Clinical Sciences Research Journal, 2020(1).

Shahid, M. A., Sarkhosh, A., Khan, N., Balal, R. M., Ali, S., Rossi, L., Gómez, C., Mattson, N., Nasim, W., & Garcia-Sanchez, F. (2020). Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy, 10(7), 938.

Shankar, A., & Prasad, V. (2023). Potential of desiccation-tolerant plant growth-promoting rhizobacteria in growth augmentation of wheat (Triticum aestivum L.) under drought stress. Frontiers in Microbiology, 14, 1017167.

Soltani, A., Weraduwage, S. M., Sharkey, T. D., & Lowry, D. B. (2019). Elevated temperatures cause loss of seed set in common bean (Phaseolus vulgaris L.) potentially through the disruption of source-sink relationships. BMC genomics, 20(1), 1-18.

Stewart, B., & Lal, R. (2018). Increasing world average yields of cereal crops: It's all about water. Advances in agronomy, 151, 1-44.

Takeno, K. (2016). Stress-induced flowering: the third category of flowering response. Journal of Experimental Botany, 67(17), 4925-4934.

Venske, E., Dos Santos, R. S., Busanello, C., Gustafson, P., & Costa de Oliveira, A. (2019). Bread wheat: a role model for plant domestication and breeding. Hereditas, 156(1), 1-11.

Visscher, P., Van der Beek, S., & Haley, C. (2021). Marker assisted selection. In Animal Breeding (pp. 119-136). Routledge.

Voss-Fels, K. P., Cooper, M., & Hayes, B. J. (2019). Accelerating crop genetic gains with genomic selection. Theoretical and Applied Genetics, 132, 669-686.

Walli, M. H., Al-Jubouri, Z., Madumarov, M. M., Margaryta, M., & Aldibe, A. A. A. (2022). Genetic and environment diversity to improve wheat (Triticum spp.) productivity: A review. Research on Crops, 23(2).

Wani, S. H., Khan, H., Riaz, A., Joshi, D. C., Hussain, W., Rana, M., Kumar, A., Athiyannan, N., Singh, D., & Ali, N. (2022). Genetic diversity for developing climate-resilient wheats to achieve food security goals. Advances in agronomy, 171, 255-303.

Wu, A., Hammer, G. L., Doherty, A., von Caemmerer, S., & Farquhar, G. D. (2019). Quantifying impacts of enhancing photosynthesis on crop yield. Nature plants, 5(4), 380-388.

Wu, X., Tang, Y., Li, C., & Wu, C. (2018). Characterization of the rate and duration of grain filling in wheat in southwestern China. Plant Production Science, 21(4), 358-369.

Yang, L., Zhao, D., Meng, Z., Xu, K., Yan, J., Xia, X., Cao, S., Tian, Y., He, Z., & Zhang, Y. (2020). QTL mapping for grain yield-related traits in bread wheat via SNP-based selective genotyping. Theoretical and Applied Genetics, 133, 857-872.

Younis, A., Ramzan, F., Ramzan, Y., Zulfiqar, F., Ahsan, M., & Lim, K. B. (2020). Molecular markers improve abiotic stress tolerance in crops: a review. Plants, 9(10), 1374.

Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., & Ciais, P. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of sciences, 114(35), 9326-9331.

Zörb, C., Ludewig, U., & Hawkesford, M. J. (2018). Perspective on wheat yield and quality with reduced nitrogen supply. Trends in plant science, 23(11), 1029-1037.

Zubair, M., Shakir, M., Ali, Q., Rani, N., Fatima, N., Farooq, S., Shafiq, S., Kanwal, N., Ali, F., & Nasir, I. A. (2016). Rhizobacteria and phytoremediation of heavy metals. Environmental Technology Reviews, 5(1), 112-119.

Downloads

Published

2023-05-27

How to Cite

ABBAS, A., REHMAN, A., ALI, T., SAMI, A., & HAIDER, M. (2023). IMPROVEMENT OF WHEAT PRODUCTION THROUGH GENETIC AND ENVIRONMENTAL INTERACTIONS. Journal of Physical, Biomedical and Biological Sciences, 2023(1), 8. https://jpbab.com/index.php/home/article/view/8

Similar Articles

You may also start an advanced similarity search for this article.