CONTROLLING STRESS RESPONSES IN FRUIT CROPS THROUGH THE INFLUENCE OF PLANT HORMONES
Keywords:
abiotic stress, signalling pathways, heavy metals, salt stress, hormonesAbstract
Abiotic stress, impaired by climate change, poses a significant threat to global fruit crop production, with less than 3.5% of the world's land considered free from such stressors. The ensuing morphological, physiological, and biochemical changes in plants under abiotic stress are explored, underscoring the importance of addressing these challenges for sustainable agriculture. The postharvest diseases induced by pathogens emphasize the role of fruit resistance and intricate defense signaling pathways. Anthocyanins emerge as crucial compounds in mitigating stress-induced damage, with a focus on their chelating properties and diverse functions. Plant hormones' modulation of anthocyanin production is investigated, shedding light on the potential of hormones like abscisic acid, jasmonic acid, cytokinin, gibberellic acid, and ethylene in enhancing stress resistance. The involvement of Gibberellins in plant defense mechanisms and the significance of Salicylic acid in stress response are discussed, providing valuable insights into hormonal regulation under different stress conditions. The responses of fruit crops to temperature, water, salt, and heavy metal stress highlight the complex interactions and adaptations crucial for survival. It highlights the importance of understanding hormonal control mechanisms for enhancing crop resilience and sustainability in the face of global agricultural challenges. Further research is needed to unravel signaling pathways and molecular networks, paving the way for innovative approaches in crop breeding, genetic engineering, and precision agriculture to ensure food security amidst changing environmental conditions.
Downloads
References
Acosta-Motos, J.R., Hern´andez, J.A., Alvarez, ´ S., Barba-Espín, G., S´anchez-Blanco, M.J., (2017). The long-term resistance mechanisms, critical irrigation threshold, and relief capacity shown by Eugenia Myrt folia plants in response to saline reclaimed water. Plant Physiol. Biochem. 1 (111), 244–256
Agami, R. A., & Mohamed, G. F. (2013). Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotoxicology and Environmental Safety, 94, 164–171. https://doi.org/10.1016/j.ecoenv.2013.04.013
Agati, G., Brunetti, C., Di Ferdinando, M., Ferrini, F., Pollastri, S., & Tattini, M. (2013). Functional roles of flavonoids in photoprotection: New evidence, lessons from the past. Plant Physiology and Biochemistry, 72, 35–45. https://doi.org/10.1016/j.plaphy.2013.03.014
Ahmad, P, Prasad, MNV, 2012b. Environmental Adaptations and Stress Tolerance in Plants in the Era of Climate Change. Springer Science Business Media, LLC, New York, NY. https://doi.org/10.1007/978-1-4614-0815-4.
An, C., & Mou, Z. (2011). Salicylic Acid and its Function in Plant ImmunityF. Journal of Integrative Plant Biology, 53(6), 412–428. https://doi.org/10.1111/j.1744-7909.2011.01043.x
An, J.-P., Wang, X.-F., Li, Y.-Y., Song, L.-Q., Zhao, L.-L., You, C.-X., Hao, Y.-J., 2018a. EIN3-LIKE1, MYB1, and ETHYLENE RESPONSE FACTOR3 act in a regulatory loop that synergistically modulates ethylene biosynthesis and anthocyanin accumulation. Plant Physiol. 178, 808–823.
Bernstein, N., Meiri, A., & Zilberstaine, M. (2004). Root Growth of Avocado is More Sensitive to Salinity than Shoot Growth. Journal of the American Society for Horticultural Science, 129(2), 188–192. https://doi.org/10.21273/jashs.129.2.0188
Bons, H. K., & Kaur, M. (2019). Role of plant growth regulators in improving fruit set, quality, and yield of fruit crops: a review. The Journal of Horticultural Science and Biotechnology, 95(2), 137–146. https://doi.org/10.1080/14620316.2019.1660591
Cantín, C. M., Fidelibus, M. W., & Crisosto, C. H. (2007). Application of abscisic acid (ABA) at veraison advanced red color development and maintained post-harvest quality of “Crimson Seedless” grapes. Postharvest Biology and Technology, 46(3), 237–241. https://doi.org/10.1016/j.postharvbio.2007.05.017
Chen, D., Chen, T., Chen, Y., Zhang, Z., Li, B., & Tian, S. (2023). Bio-source substances against postharvest diseases of fruits: Mechanisms, applications, and perspectives. Postharvest Biology and Technology, 198, 112240–112240. https://doi.org/10.1016/j.postharvbio.2023.112240
Chen, Y. E., Cui, J. M., Li, G. X., Yuan, M., Zhang, Z. W., Yuan, S., & Zhang, H. Y. (2016). Effect of salicylic acid on the antioxidant system and photosystem II in wheat seedlings. Biologia Plantarum, 60(1), 139–147. https://doi.org/10.1007/s10535-015-0564-4
Claeys, H., Skirycz, A., Maleux, K., & Inzé, D. (2012). DELLA Signaling Mediates Stress-Induced Cell Differentiation in Arabidopsis Leaves through Modulation of Anaphase-Promoting Complex/Cyclosome Activity. Plant Physiology, 159(2), 739–747. https://doi.org/10.1104/pp.112.195032
Wang, Y.-c., Wang, N., Xu, H.-f., Jiang, S.-h., Fang, H.-c., Su, M.-y., Zhang, Z.-y.,Zhang, T.-l., Chen, X.-s., 2018b. Auxin regulates anthocyanin biosynthesis through the Aux/IAA–ARF signaling pathway in apples. Hortic. Res. 5.
Dokoozlian, N. K., & Peacock, W. L. (2001). Gibberellic Acid Applied at Bloom Reduces Fruit Set and Improves Size of “Crimson Seedless” Table Grapes. HortScience, 36(4), 706–709. https://doi.org/10.21273/hortsci.36.4.706
Edelstein, M., & Ben-Hur, M. (2018). Heavy metals and metalloids: Sources, risks, and strategies to reduce their accumulation in horticultural crops. Scientia Horticulturae, 234, 431–444. https://doi.org/10.1016/j.scienta.2017.12.039
Farooq, M.G., Liu, X.H. and Melville, I.D., International Business Machines Corp, (2009a). Test structures for electrically detecting the back end of the line failures and methods of making and using the same. U.S. Patent 7, 622,737.
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D.B.S.M.A., Basra, S.M.A., (2009b). Plant drought stress: effects, mechanisms, and management. Sustainable Agriculture. Springer, Dordrecht, pp. 153–188.
Fediuc, E., Lips, S.H., Erdei, L., (2005). O-acetyl serine (thiol) lyase activity in Phragmites and Typha plants under cadmium and NaCl stress conditions and the involvement of ABA in the stress response. J. Plant Physiol. 162 (8), 865–872
Golam Jalal Ahammed, Li, X., & Yu, J. (2023). Introduction to Plant Hormones and Climate Change. 1–16. https://doi.org/10.1007/978-981-19-4941-8_1
Hsu, Y.T., Kao, C.H., (2007). Toxicity in leaves of rice exposed to cadmium is due to hydrogen peroxide accumulation. Plant Soil 298 (1-2), 231–241
Hussain, M., Shah Fahad, Sharif, R., Muhammad Faheem Jan, Mujtaba, M., Ali, Q., Ahmad, A., Ahmad, H., Amin, N., Babatope Samuel Ajayo, Sun, C., Gu, L., Ahmad, I., Jiang, Z., & Hou, J. (2020). Multifunctional role of brassinosteroid and its analogues in plants. Plant Growth Regulation, 92(2), 141–156. https://doi.org/10.1007/s10725-020-00647-8
Hyun, Y., Richter, R., Vincent, C., Martinez-Gallegos, R., Porri, A., & Coupland, G. (2016). Multi-layered Regulation of SPL15 and Cooperation with SOC1 Integrate Endogenous Flowering Pathways at the Arabidopsis Shoot Meristem. Developmental Cell, 37(3), 254–266. https://doi.org/10.1016/j.devcel.2016.04.001
Iqbal, M.S., Zahoor, M., Akbar, M., Ahmad, K., Hussain, S., Munir, S., Ali, M., Arshad, N., Masood, H., Zafar, S., (2022). Alleviating the deleterious effects of salt stress on wheat (Triticum aestivum L.) by foliar application of gibberellic acid and salicylic acid. Appl. Ecol. Environ. Res. 20, 119–134.
Issarakraisila, M., Ma, Q., & Turner, D. W. (2007). Photosynthetic and growth responses of juvenile Chinese kale (Brassica oleracea var. alboglabra) and Caisin (Brassica rapa subsp. parachinensis) to waterlogging and water deficit. Scientia Horticulturae, 111(2), 107–113. https://doi.org/10.1016/j.scienta.2006.10.017
Jezek, M., Allan, A. C., Jones, J. J., & Geilfus, C. (2023). Why do plants blush when they are hungry? New Phytologist. https://doi.org/10.1111/nph.18833
Kochar, D., shil, S., & hul, R. (2020). A Review on the Impact of Abiotic Stress on Plant Growth and Crop Production. International Journal of Current Microbiology and Applied Sciences, 9(7), 3958–3970. https://doi.org/10.20546/ijcmas.2020.907.465
Koutroubas, S. D., & Damalas, C. A. (2016). Morpho-physiological responses of sunflower to foliar applications of chlormequat chloride (CCC). Bioscience Journal, 1493–1501. https://doi.org/10.14393/bj-v32n6a2016-33007
Leão, P. C. de S., Lima, M. A. C., Costa, J. P. D., & Trindade, D. C. G. da. (2014). Abscisic Acid and Ethephon for Improving Red Color and Quality of Crimson Seedless Grapes Grown in a Tropical Region. American Journal of Enology and Viticulture, 66(1), 37–45. https://doi.org/10.5344/ajev.2014.14041
Liu, J., Islam, M. T., & Sherif, S. M. (2022). Effects of Aminoethoxyvinylglycine (AVG) and 1-Methylcyclopropene (1-MCP) on the Pre-Harvest Drop Rate, Fruit Quality, and Stem-End Splitting in “Gala” Apples. Horticulturae, 8(12), 1100. https://doi.org/10.3390/horticulturae8121100
Maoz, I., Bahar, A., Kaplunov, T., Zutchi, Y., Daus, A., Lurie, S., & Lichter, A. (2014). Effect of the Cytokinin Forchlorfenuron on Tannin Content of Thompson Seedless Table Grapes. American Journal of Enology and Viticulture, 65(2), 230–237. https://doi.org/10.5344/ajev.2014.13095
Marcelis, L. F. M., Heuvelink, E., & Goudriaan, J. (1998). Modelling biomass production and yield of horticultural crops: a review. Scientia Horticulturae, 74(1-2), 83–111. https://doi.org/10.1016/s0304-4238(98)00083-1
Mathivanan, S. (2021). Abiotic Stress-Induced Molecular and Physiological Changes and Adaptive Mechanisms in Plants. Abiotic Stress in Plants. https://doi.org/10.5772/intechopen.93367
Medici, A., Laloi, M., & Atanassova, R. (2014). Profiling of sugar transporter genes in grapevine coping with water deficit. FEBS Letters, 588(21), 3989–3997. https://doi.org/10.1016/j.febslet.2014.09.016
Milić, B., Tarlanović, J., Keserović, Z., Zorić, L., Blagojević, B., & Magazin, N. (2016). The Growth of Apple Central Fruits as Affected by Thinning with NAA, BA and Naphthenic Acids. Erwerbs-Obstbau, 59(3), 185–193. https://doi.org/10.1007/s10341-016-0310-x
Minhas, P. S., Rane, J., & P. Ratnakumar. (2017). Abiotic Stress Management for Resilient Agriculture. In Springer eBooks. https://doi.org/10.1007/978-981-10-5744-1
Mubarik, M. S., Khan, S. H., Sajjad, M., Raza, A., Hafeez, M. B., Yasmeen, T., Rizwan, M., Ali, S., & Arif, M. S. (2021). A manipulative interplay between positive and negative regulators of phytohormones: A way forward for improving drought tolerance in plants. Physiologia Plantarum, 172(2), 1269–1290. https://doi.org/10.1111/ppl.13325
Mukhopadhyay, M., & Mondal, T. K. (2015). Effect of Zinc and Boron on Growth and Water Relations of Camellia sinensis (L.) O. Kuntze cv. T-78. National Academy Science Letters, 38(3), 283–286. https://doi.org/10.1007/s40009-015-0381-5
Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Nora, L., Gabriel Ollé Dalmazo, Fabiana Roos Nora, & Cesar Valmor Rombaldi. (2012). Controlled Water Stress to Improve Fruit and Vegetable Postharvest Quality. https://doi.org/10.5772/30182
Ozkan, Y. (2016). Effects of Aminoethoxyvinylglycine and Naphthaleneacetic Acid on Ethylene Biosynthesis, Pre-Harvest Fruit Drop and Fruit Quality of Apple. Pakistan Journal of Agricultural Sciences, 53(04), 893–900. https://doi.org/10.21162/pakjas/16.2226
Page, V., & Feller, U. (2015). Heavy Metals in Crop Plants: Transport and Redistribution Processes on the Whole Plant Level. Agronomy, 5(3), 447–463. https://doi.org/10.3390/agronomy5030447
Peng, Y., van Wersch, R., & Zhang, Y. (2018). Convergent and Divergent Signaling in PAMP-Triggered Immunity and Effector-Triggered Immunity. Molecular Plant-Microbe Interactions, 31(4), 403–409. https://doi.org/10.1094/mpmi-06-17-0145-cr
Pfleiderer, P., Menke, I., & Schleussner, C.-F. (2019). Increasing risks of apple tree frost damage under climate change. Climatic Change, 157(3-4), 515–525. https://doi.org/10.1007/s10584-019-02570-y
Raga, V., Intrigliolo, D. S., Bernet, G. P., Carbonell, E. A., & Asins, M. J. (2016). Genetic analysis of salt tolerance in a progeny derived from the citrus rootstocks Cleopatra mandarin and trifoliate orange. Tree Genetics & Genomes, 12(3). https://doi.org/10.1007/s11295-016-0991-1
Rana, K., Chauhan, N., & Jyoti Bharti Sharma. (2020). Effect of photoperiod and gibberellic acid (GA3) on flowering and fruiting of strawberry- A review. Journal of Pharmacognosy and Phytochemistry, 9(6), 1651–1655. https://doi.org/10.22271/phyto.2020.v9.i6x.13185
Rao, N. K. S., Laxman, R. H., & Shivashankara, K. S. (2016). Physiological and Morphological Responses of Horticultural Crops to Abiotic Stresses. Abiotic Stress Physiology of Horticultural Crops, 3–17. https://doi.org/10.1007/978-81-322-2725-0_1
Ravi, I. (2013). Phenotyping bananas for drought resistance. Frontiers in Physiology, 4. https://doi.org/10.3389/fphys.2013.00009
Ravi, I., & Vaganan, M. M. (2016). Abiotic Stress Tolerance in Banana. Abiotic Stress Physiology of Horticultural Crops, 207–222. https://doi.org/10.1007/978-81-322-2725-0_12
Rodriguez, E., Santos, C., Azevedo, R., Moutinho-Pereira, J., Correia, C., & Dias, M. C. (2012). Chromium (VI) induces toxicity at different photosynthetic levels in peas. Plant Physiology and Biochemistry, 53, 94–100. https://doi.org/10.1016/j.plaphy.2012.01.013
Roy, M., & McDonald, L. M. (2013). Metal Uptake in Plants and Health Risk Assessments in Metal-Contaminated Smelter Soils. Land Degradation & Development, 26(8), 785–792. https://doi.org/10.1002/ldr.2237
Rui, J., Zhen, Y., (2016). An improved centroid localization algorithm based on interactive computation for wireless sensor network. Acta Phys. Sin. 65 (3).
Salim Akhter, M., Noreen, S., Mahmood, S., Athar, H.-R., Ashraf, M., Abdullah Alsahli, A., & Ahmad, P. (2021). Influence of salinity stress on PSII in barley (Hordeum vulgare L.) genotypes, probed by chlorophyll-a fluorescence. Journal of King Saud University - Science, 33(1), 101239. https://doi.org/10.1016/j.jksus.2020.101239
Sebek, G. (2015). Application of NAA and BA in chemical thinning of some commercial apple cultivars. Acta Agriculturae Serbica, 20(39), 3–16. https://doi.org/10.5937/aaser1539003s
Shah, W. H., Rasool, A., Saleem, S., Mushtaq, N. U., Tahir, I., Hakeem, K. R., & Rehman, R. U. (2021). Understanding the Integrated Pathways and Mechanisms of Transporters, Protein Kinases, and Transcription Factors in Plants under Salt Stress. International Journal of Genomics, 2021, 1–16. https://doi.org/10.1155/2021/5578727
Shahbaz, M., Noreen, N., & Perveen, S. (2013). Triacontanol modulates photosynthesis and osmoprotectants in canola (Brassica napus L.) under saline stress. Journal of Plant Interactions, 8(4), 350–359. https://doi.org/10.1080/17429145.2013.764469
Shiri Goldental-Cohen, Burstein, C., Biton, I., S. Ben Sasson, Asaf Sadeh, Many, Y., Adi Doron-Faigenboim, Hanita Zemach, Y. Mugira, Schneider, D., Birger, R., Meir, S., Philosoph-Hadas, S., V. Irihomovitch, S. Lavee, Avidan, B., & Giora Ben-Ari. (2017). Ethephon induced oxidative stress in the olive leaf abscission zone enables development of a selective abscission compound. BMC Plant Biology, 17(1). https://doi.org/10.1186/s12870-017-1035-1
Sinha, B. K., & Watson, D. C. (2007). Stress, coping, and psychological illness: A cross-cultural study. International Journal of Stress Management, 14(4), 386–397. https://doi.org/10.1037/1072-5245.14.4.386
Vernay, P., Gauthier-Moussard, C., & Hitmi, A. (2007). Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition, and photosynthesis in developed leaves of Lolium perenne L. Chemosphere, 68(8), 1563–1575. https://doi.org/10.1016/j.chemosphere.2007.02.052
Zhang, B., Gao, Y., Zhang, L., & Zhou, Y. (2021). The plant cell wall: Biosynthesis, construction, and functions. Journal of Integrative Plant Biology, 63(1), 251–272. https://doi.org/10.1111/jipb.13055
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2024 M SANAULLAH (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.