GENOME-WIDE IDENTIFICATION AND CHARACTERIZATION OF PBS3 PLANT-SPECIFIC  TRANSCRIPTION FACTOR GENE FAMILY IN CARROT SPECIES (DAUCUS CAROTA L.)

Authors

  • A RAZA Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan Author https://orcid.org/0009-0009-0987-2917
  • M AYUB Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan Author https://orcid.org/0009-0001-3718-0100
  • A ABBAS National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China Author

Keywords:

Gene expression pattern, genome-wide analysis, Carrot plant, transcription factor, PBS3 gene family

Abstract

Plant growth, maturation,  biotic and abiotic stress tolerance or resistance and signalling are all significantly influenced by the PBS3 gene. Commonly referred to as Gretchen Hegan 3 (GH3) A zinc finger protein, which belongs to the C2H2-type and also anticipated to have a role in transcription of PBS3,Salicylic acid (SA) production, which regulates plant ageing. This gene involves in its final two stages. Total Salicylic acid accumulation, SA-dependent gene expression and plant defence are all compromised in Arabidopsis thaliana by PBS3 mutants. Also the most important enzyme in the route leading to SA biosynthesis has also been exhibit to be the PBS3 gene. The gene is linked to disease resistance and also have the ability to respond to particular stimuli or infections in carrots, according to research done on the vegetable. The presence and function of the PBS3 gene family in carrots have not been fully explored, despite the fact that it has been widely examined in many plant species. To understand the phenotypic and genetic traits of the PBS3 gene family in carrots, we carried out a thoroughly genome-wide investigation of the gene family in this work. Using in silico techniques, PBS3 gene family members were identified inside the carrot genome. The PBS3 gene family's reaction to particular stimuli or infections was then examined using gene expression analysis. The study also look round to investigate the evolutionary linkages and possible regulatory mechanisms of the PBS3 gene family in carrots. Our study used a multifaced strategy to investigate the genetic, evolutionary, and regulatory features of the PBS3 gene family in carrots. We did this by exploiting methods like genome mining, gene expression analysis and phylogenetic investigations. The results of this work advance our knowledge of the genetic and phenotypic characteristics of the PBS3 gene family in carrots, which may have ramifications for the creation of better cultivar types and approaches to disease prevention.

Downloads

Download data is not yet available.

References

Abdala, M. E., M. B. Rivero, M. E. Luque, D. Di Lullo, B. E. Luna, P. G. Carranza, B. J. Volta and F. D. Rivero (2023). Proteomic analysis of proteins released by Tritrichomonas foetus: Identification of potential targets for the development of new diagnostic methods. Veterinary Parasitology 316: 109890. https://doi.org/10.1016/j.vetpar.2023.109890

Akram, J., R. Siddique, M. Shafiq, B. Tabassum, M. T. Manzoor, M. A. Javed, S. Anwar, B. U. Nisa, M. H. Saleem and B. Javed (2023). Genome-wide identification of CCO gene family in cucumber (Cucumis sativus) and its comparative analysis with A. thaliana. BMC Plant Biology 23(1): 640.

Alberts, B. (2017). Molecular biology of the cell, Garland science.

Arnason, J. T. and M. A. Bernards (2010). Impact of constitutive plant natural products on herbivores and pathogens. Canadian Journal of Zoology 88(7): 615-627. https://doi.org/10.1139/Z10-038

Asayama, M. (2006). Regulatory system for light-responsive gene expression in photosynthesizing bacteria: cis-elements and trans-acting factors in transcription and post-transcription. Bioscience, biotechnology, and biochemistry 70(3): 565-573. https://doi.org/10.1271/bbb.70.565

AshaRani, P., S. Sethu, H. K. Lim, G. Balaji, S. Valiyaveettil and M. P. Hande (2012). Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells. Genome integrity 3: 1-14.

Bailey, T. L., M. Boden, F. A. Buske, M. Frith, C. E. Grant, L. Clementi, J. Ren, W. W. Li and W. S. Noble (2009). MEME SUITE: tools for motif discovery and searching. Nucleic acids research 37(suppl_2): W202-W208. https://doi.org/10.1093/nar/gkp335

Baloglu, M. C., V. Eldem, M. Hajyzadeh and T. Unver (2014). Genome-wide analysis of the bZIP transcription factors in cucumber. PloS one 9(4): e96014. https://doi.org/10.1371/journal.pone.0096014

Barah, P., P. Winge, A. Kusnierczyk, D. H. Tran and A. M. Bones (2013). Molecular signatures in Arabidopsis thaliana in response to insect attack and bacterial infection. PLoS One 8(3): e58987. https://doi.org/10.1371/journal.pone.0058987

Baranski, R., E. Klocke and T. Nothnagel (2007). Enhancing resistance of transgenic carrot to fungal pathogens by the expression of Pseudomonas fluorescence microbial factor 3 (MF3) gene. Physiological and molecular plant pathology 71(1-3): 88-95. https://doi.org/10.1016/j.pmpp.2007.12.002

Baruah, I., G. M. Baldodiya, J. Sahu and G. Baruah (2020). Dissecting the role of promoters of pathogen-sensitive genes in plant defense. Current Genomics 21(7): 491503. https://doi.org/10.2174/1389202921999200727213500

Berens, M. L., K. W. Wolinska, S. Spaepen, J. Ziegler, T. Nobori, A. Nair, V. Krüler, T. M. Winkelmüller, Y. Wang and A. Mine (2019). Balancing trade-offs between biotic and abiotic stress responses through leaf age-dependent variation in stress hormone cross-talk. Proceedings of the National Academy of Sciences 116(6): 2364-2373. https://doi.org/10.1073/pnas.1817233116

Bhattacharya, M., A. Hota, A. Kar, D. S. Chini, R. C. Malick, B. C. Patra and B. K. Das (2018). In silico structural and functional modelling of Antifreeze protein (AFP) sequences of Ocean pout (Zoarces americanus, Bloch & Schneider 1801). Journal of Genetic Engineering and Biotechnology 16(2): 721-730. https://doi.org/10.1016/j.jgeb.2018.08.004

Biłas, R., K. Szafran, K. Hnatuszko-Konka and A. K. Kononowicz (2016). Cis-regulatory elements used to control gene expression in plants. Plant Cell, Tissue and Organ Culture (PCTOC) 127: 269-287.

Brown, J., M. Duggan, I. Kuziemko and W. Woolston (2014). How does risk selection respond to risk adjustment? New evidence from the Medicare Advantage Program. American Economic Review 104(10): 3335-3364. 10.1257/aer.104.10.3335

Chaudhary, A., K. Bala, S. Thakur, R. Kamboj and N. Dumra (2018). Plant defenses against herbivorous insects: a review. IJCS 6(5): 681-688.

Checker, V. G., H. R. Kushwaha, P. Kumari and S. Yadav (2018). Role of phytohormones in plant defense: signaling and cross talk. Molecular aspects of plant-pathogen interaction: 159-184.

Chen, H., T. Wang, X. He, X. Cai, R. Lin, J. Liang, J. Wu, G. King and X. Wang (2022). BRAD V3. 0: an upgraded Brassicaceae database. Nucleic Acids Research 50(D1): D1432-D1441. https://doi.org/10.1093/nar/gkab1057

Comeron, J. M. (1995). A method for estimating the numbers of synonymous and nonsynonymous substitutions per site. Journal of molecular evolution 41: 1152-1159.

Comprehensive analysis of gene expression in Nicotiana tabacum leaves acclimated to oxidative stress. Proceedings of the National Academy of Sciences 99(16): 10870-10875. https://doi.org/10.1073/pnas.152337999

Consortium, U. (2019). UniProt: a worldwide hub of protein knowledge. Nucleic acids research 47(D1): D506-D515. https://doi.org/10.1093/nar/gky1049

Covington, M. F., J. N. Maloof, M. Straume, S. A. Kay and S. L. Harmer (2008). Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome biology 9: 1-18.

Din, M., M. Y. K. Barozai and A. N. Aziz (2018). In Silico Profiling and Characterization of Conserved microRNAs in Biofuel Plant Sorghum. Pak. J. Bot 50(6): 2265-2275.

Dolfini, D., F. Zambelli, G. Pavesi and R. Mantovani (2009). A perspective of promoter architecture from the CCAAT box. Cell cycle 8(24): 4127-4137. https://doi.org/10.4161/cc.8.24.10240

Donnelly, S. M., D. J. Sullivan, D. B. Shanley and D. C. Coleman (1999). Phylogenetic analysis and rapid identification of Candida dubliniensis based on analysis of ACT1 intron and exon sequences. Microbiology 145(8): 1871-1882. https://doi.org/10.1099/13500872-145-8-1871

Dorman, H. D., M. Koşar, K. Kahlos, Y. Holm and R. Hiltunen (2003). Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. Journal of agricultural and food chemistry 51(16): 4563-4569. https://doi.org/10.1021/jf034108k

du Toit, L. J., V. Le Clerc and M. Briard (2019). Genetics and genomics of carrot biotic stress. The Carrot Genome: 317-362.

Du, H., S.-S. Yang, Z. Liang, B.-R. Feng, L. Liu, Y.-B. Huang and Y.-X. Tang (2012). Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC plant biology 12: 1-22.

Ewens, W. J. and G. Grant (2005). Blast. Statistical Methods in Bioinformatics: An Introduction: 345-383.

Fürstenberg-Hägg, J., M. Zagrobelny and S. Bak (2013). Plant defense against insect herbivores. International journal of molecular sciences 14(5): 10242-10297. https://doi.org/10.3390/ijms140510242

Hancock, J. F. (2012). Plant evolution and the origin of crop species, CABI. https://doi.org/10.1079/9780851996851.0000

Hanif, Q., M. Farooq, I. Amin, S. Mansoor, Y. Zhang and Q. M. Khan (2018). In silico identification of conserved miRNAs and their selective target gene prediction in indicine (Bos indicus) cattle. PLoS One 13(10): e0206154. https://doi.org/10.1371/journal.pone.0206154

Henegar, C., J. Tordjman, V. Achard, D. Lacasa, I. Cremer, M. Guerre-Millo, C. Poitou, A. Basdevant, V. Stich and N. Viguerie (2008). Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity. Genome biology 9: 1-32.

Hernandez-Garcia, C. M. and J. J. Finer (2014). Identification and validation of promoters and cis-acting regulatory elements. Plant Science 217: 109-119. https://doi.org/10.1016/j.plantsci.2013.12.007

Hewitt, G. M. (2004). The structure of biodiversity–insights from molecular phylogeography. Frontiers in zoology 1(1): 1-16.

Huang, S., J. Wang, W. Yue, J. Chen, S. Gaughan, W. Lu, G. Lu and C. Wang (2015). Transcriptomic variation of hepatopancreas reveals the energy metabolism and biological processes associated with molting in Chinese mitten crab, Eriocheir sinensis. Scientific reports 5(1): 14015.

Iorizzo, M., S. Ellison, D. Senalik, P. Zeng, P. Satapoomin, J. Huang, M. Bowman, M. Iovene, W. Sanseverino and P. Cavagnaro (2016). A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nature genetics 48(6): 657-666.

Jia, Y., L. Kang, Y. Wu, C. Zhou, R. Cai, H. Zhang, J. Li, Z. Chen, D. Kang and L. Zhang (2024). Nano‐selenium foliar intervention‐induced resistance of cucumber to Botrytis cinerea by activating jasmonic acid biosynthesis and regulating phenolic acid and cucurbitacin. Pest Management Science 80(2): 554-568. https://doi.org/10.1002/ps.7784

Khan, M. S. S., S. Ahmed, A. ul Ikram, F. Hannan, M. U. Yasin, J. Wang, B. Zhao, F. Islam and J. Chen (2023). Phytomelatonin: A key regulator of redox and phytohormones signaling against biotic/abiotic stresses. Redox Biology: 102805. https://doi.org/10.1016/j.redox.2023.102805

Kunjwal, N. and R. M. Srivastava (2018). Insect pests of vegetables. Pests and their Management: 163-221.

Letunic, I. and P. Bork (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic acids research 49(W1): W293-W296. https://doi.org/10.1093/nar/gkab301

Li, S., Z. Huang, Y. Zhu, J. Yan, J. Li, J. Chen, J. Zhou, Y. Zhang, W. Chen and K. Xu (2021). Bromodomain-containing protein 7 regulates matrix metabolism and apoptosis in human nucleus pulposus cells through the BRD7-PI3K-YAP1 signaling axis. Experimental Cell Research 405(2): 112658. https://doi.org/10.1016/j.yexcr.2021.112658

Li, W., J. He, X. Wang, M. Ashline, Z. Wu, F. Liu, Z. Q. Fu and M. Chang (2023). PBS3: a versatile player in and beyond salicylic acid biosynthesis in Arabidopsis. New Phytologist 237(2): 414-422. https://doi.org/10.1111/nph.18558

Lijavetzky, D., P. Carbonero and J. Vicente-Carbajosa (2003). Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC evolutionary biology 3(1): 1-11.

Lima, J. C. d., G. Loss-Morais and R. Margis (2012). MicroRNAs play critical roles during plant development and in response to abiotic stresses. Genetics and molecular biology 35: 1069-1077. https://doi.org/10.1590/S1415-47572012000600023

Liu, L., C. Ou, S. Chen, Q. Shen, B. Liu, M. Li, Z. Zhao, X. Kong, X. Yan and F. Zhuang (2020). The response of COL and FT homologues to photoperiodic regulation in carrot (Daucus carota L.). Scientific Reports 10(1): 9984.

Liu, X., H. Zhang, W. Zhang, W. Xu, S. Li, X. Chen and H. Chen (2022). Genome-wide bioinformatics analysis of Cellulose Synthase gene family in common bean (Phaseolus vulgaris L.) and the expression in the pod development. BMC Genomic Data 23(1): 1-15.

Lu, J., T. Tang, H. Tang, J. Huang, S. Shi and C.-I. Wu (2006). The accumulation of deleterious mutations in rice genomes: a hypothesis on the cost of domestication. Trends in Genetics 22(3): 126-131.

Ma, K.-W. and W. Ma (2016). Phytohormone pathways as targets of pathogens to facilitate infection. Plant molecular biology 91: 713-725.

Mackelprang, R. (2017). Identification and characterization of genetic and molecular components of Arabidopsis thaliana PBS3-mediated salicylic acid induction during defense against microbial pathogens, University of California, Berkeley.

Martin, C. and J. Paz-Ares (1997). MYB transcription factors in plants. Trends in Genetics 13(2): 67-73.

Nicholson, J. M., J. C. Macedo, A. J. Mattingly, D. Wangsa, J. Camps, V. Lima, A. M. Gomes, S. Doria, T. Ried and E. Logarinho (2015). Chromosome mis-segregation and cytokinesis failure in trisomic human cells. elife 4: e05068.

Nobuta, K., R. Okrent, M. Stoutemyer, N. Rodibaugh, L. Kempema, M. Wildermuth and R. Innes (2007). The GH3 acyl adenylase family member PBS3 regulates salicylic acid-dependent defense responses in Arabidopsis. Plant physiology 144(2): 1144-1156. https://doi.org/10.1104/pp.107.097691

Nürnberger, T. and B. Kemmerling (2009). Pathogen-associated molecular patterns (PAMP) and PAMP-triggered immunity. Annual Plant Reviews 34. 10.1002/9781444301441

Okrent, R. A. and M. C. Wildermuth (2011). Evolutionary history of the GH3 family of acyl adenylases in rosids. Plant molecular biology 76: 489-505.

Okrent, R. A., M. D. Brooks and M. C. Wildermuth (2009). Arabidopsis GH3. 12 (PBS3) conjugates amino acids to 4-substituted benzoates and is inhibited by salicylate. Journal of Biological Chemistry 284(15): 9742-9754.

Panchy, N., M. Lehti-Shiu and S.-H. Shiu (2016). Evolution of gene duplication in plants. Plant physiology 171(4): 2294-2316. https://doi.org/10.1104/pp.16.00523

Pandey, G. K. (2017). Mechanism of Plant Hormone Signaling Under Stress, 2 Volume Set, John Wiley & Sons.

Pathak, M., S. Barik and S. K. Das (2021). Impact of Climate Change on Root Crops Production. Advances in Research on Vegetable Production Under a Changing Climate Vol. 1: 125-148.

Pfannschmidt, T. (2003). Chloroplast redox signals: how photosynthesis controls its own genes. Trends in plant science 8(1): 33-41.

Pilati, S., G. Bagagli, P. Sonego, M. Moretto, D. Brazzale, G. Castorina, L. Simoni, C. Tonelli, G. Guella and K. Engelen (2017). Abscisic acid is a major regulator of grape berry ripening onset: new insights into ABA signaling network. Frontiers in plant science 8: 1093. https://doi.org/10.3389/fpls.2017.01093

Pokotylo, I., V. Kravets and E. Ruelland (2019). Salicylic acid binding proteins (SABPs): The hidden forefront of salicylic acid signalling. International Journal of Molecular Sciences 20(18): 4377. https://doi.org/10.3390/ijms20184377

Poór, P. (2020). Effects of salicylic acid on the metabolism of mitochondrial reactive oxygen species in plants. Biomolecules 10(2): 341. https://doi.org/10.3390/biom10020341

Pottinger, S. E. and R. W. Innes (2020). RPS5-mediated disease resistance: fundamental insights and translational applications. Annual review of phytopathology 58: 139-160. https://doi.org/10.1146/annurev-phyto-010820-012733

Prajapati, S., S. K. Sharma and S. Kadwey (2015). Salicylic Acid a multifaceted hormone for vegetable crops-A Review. Trends Biosci 8: 1179-1185.

Que, F., X.-L. Hou, G.-L. Wang, Z.-S. Xu, G.-F. Tan, T. Li, Y.-H. Wang, A. Khadr and A.-S. Xiong (2019). Advances in research on the carrot, an important root vegetable in the Apiaceae family. Horticulture research 6. https://doi.org/10.1038/s41438-019-0150-6

Raza, S. H. A., R. Khan, G. Cheng, F. Long, S. Bing, A. A. Easa, N. M. Schreurs, S. D. Pant, W. Zhang and A. Li (2022). RNA-Seq reveals the potential molecular mechanisms of bovine KLF6 gene in the regulation of adipogenesis. International Journal of Biological Macromolecules 195: 198-206. https://doi.org/10.1016/j.ijbiomac.2021.11.202

Razzaq, M. K., M. Aleem, S. Mansoor, M. A. Khan, S. Rauf, S. Iqbal and K. H. Siddique (2021). Omics and CRISPR-Cas9 approaches for molecular insight, functional gene analysis, and stress tolerance development in crops. International Journal of Molecular Sciences 22(3): 1292. https://doi.org/10.3390/ijms22031292

Saidi, A. and Z. Hajibarat (2019). Characterization of cis-elements in hormonal stress-responsive genes in Oryza sativa. Asia Pac J Mol Biol Biotechnol 27(1): 95-102.

Saleem, M., Q. Fariduddin and C. D. M. Castroverde (2021). Salicylic acid: A key regulator of redox signalling and plant immunity. Plant Physiology and Biochemistry 168: 381-397. https://doi.org/10.1016/j.plaphy.2021.10.011

Salopek‐Sondi, B., I. Pavlović, A. Smolko and D. Šamec (2017). Auxin as a mediator of abiotic stress responses. Mechanism of plant hormone signaling under stress 1: 1-36. https://doi.org/10.1002/9781118889022.ch1

Samad, A. F., M. Sajad, N. Nazaruddin, I. A. Fauzi, A. M. Murad, Z. Zainal and I. Ismail (2017). MicroRNA and transcription factor: key players in plant regulatory network. Frontiers in plant science 8: 565. https://doi.org/10.3389/fpls.2017.00565

Seguel, A., J. Jelenska, A. Herrera-Vásquez, S. K. Marr, M. B. Joyce, K. R. Gagesch, N. Shakoor, S.-C. Jiang, A. Fonseca and M. C. Wildermuth (2018). PROHIBITIN3 forms complexes with ISOCHORISMATE SYNTHASE1 to regulate stress-induced salicylic acid biosynthesis in Arabidopsis. Plant physiology 176(3): 2515-2531. https://doi.org/10.1104/pp.17.00941

Selvakumar, R. and P. Kalia (2022). Genomic Designing for Biotic Stress Resistance in Carrot (Daucus carota L.). Genomic Designing for Biotic Stress Resistant Vegetable Crops, Springer: 301-343.

Shukla, P. S., E. G. Mantin, M. Adil, S. Bajpai, A. T. Critchley and B. Prithiviraj (2019). Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Frontiers in plant science 10: 655. https://doi.org/10.3389/fpls.2019.00655

Song, H., P. Wang, J.-Y. Lin, C. Zhao, Y. Bi and X. Wang (2016). Genome-wide identification and characterization of WRKY gene family in peanut. Frontiers in plant science 7: 534. https://doi.org/10.3389/fpls.2016.00534

Sreekumar, J., P. Muhammed Sadiq, S. Raju and A. Mukherjee (2022). In silico analysis of carotenoid biosynthesis pathway in cassava (Manihot esculenta Crantz). Journal of Genetics 101(1): 2.

Sun, H., B. Pang, J. Yan, T. Wang, L. Wang, C. Chen, Q. Li and Z. Ren (2018). Comprehensive analysis of cucumber gibberellin oxidase family genes and functional characterization of CsGA20ox1 in root development in Arabidopsis. International journal of molecular sciences 19(10): 3135. https://doi.org/10.3390/ijms19103135

Surbhi, S., R. Verma, R. Deepak, H. Jain and K. Yadav (2018). A review: Food, chemical composition and utilization of carrot (Daucus carota L.) pomace. International Journal of Chemical Studies 6(3): 2921-2926.

Szczepaniak, A., M. Książkiewicz, J. Podkowiński, K. B. Czyż, M. Figlerowicz and B. Naganowska (2018). Legume cytosolic and plastid acetyl-coenzyme—a carboxylase genes differ by evolutionary patterns and selection pressure schemes acting before and after whole-genome duplications. Genes 9(11): 563. https://doi.org/10.3390/genes9110563

Thorup-Kristensen, K., D. B. Dresbøll and H. L. Kristensen (2012). Crop yield, root growth, and nutrient dynamics in a conventional and three organic cropping systems with different levels of external inputs and N re-cycling through fertility building crops. European Journal of Agronomy 37(1): 66-82. https://doi.org/10.1016/j.eja.2011.11.004

Tom, A., A. Resmi, N. Sunil and R. Rahila PLANT IMMUNE RESPONSES AND DEFENSE MECHANISMS. Recent Innovations and Approaches in Plant Pathology: 179.

Torrens-Spence, M. P., A. Bobokalonova, V. Carballo, C. M. Glinkerman, T. Pluskal, A. Shen and J.-K. Weng (2019). PBS3 and EPS1 complete salicylic acid biosynthesis from isochorismate in Arabidopsis. Molecular plant 12(12): 1577-1586. 10.1016/j.molp.2019.11.005

Tungngoen, K., U. Viboonjun, P. Kongsawadworakul, M. Katsuhara, J.-L. Julien, S. Sakr, H. Chrestin and J. Narangajavana (2011). Hormonal treatment of the bark of rubber trees (Hevea brasiliensis) increases latex yield through latex dilution in relation with the differential expression of two aquaporin genes. Journal of Plant Physiology 168(3): 253-262. https://doi.org/10.1016/j.jplph.2010.06.009

Tyagi, P., A. Singh, A. Gupta, M. Prasad and R. Ranjan (2022). Mechanism and function of salicylate in plant toward biotic stress tolerance. Emerging Plant Growth Regulators in Agriculture, Elsevier: 131-164.

Vranová, E., S. Atichartpongkul, R. Villarroel, M. Van Montagu, D. Inzé and W. Van Camp (2002). https://doi.org/10.1016/B978-0-323-91005-7.00018-7

Wang, D., F. Liu, L. Wang, S. Huang and J. Yu (2011). Nonsynonymous substitution rate (Ka) is a relatively consistent parameter for defining fast-evolving and slow-evolving protein-coding genes. Biology Direct 6(1): 1-17.

Watson, J., M. Smith, C. Francavilla and J.-M. Schwartz (2022). SubcellulaRVis: a web-based tool to simplify and visualise subcellular compartment enrichment. Nucleic Acids Research 50(W1): W718-W725. https://doi.org/10.1093/nar/gkac336

Wickramasuriya, A. M. and J. M. Dunwell (2018). Cacao biotechnology: current status and future prospects. Plant biotechnology journal 16(1): 4-17. https://doi.org/10.1111/pbi.12848

Wiley, S. R., R. J. KRAus and J. E. Mertz (1992). Functional binding of the TATA box binding component of transcription factor TFIID to the-30 region of TATA-less promoters. Proceedings of the National Academy of Sciences 89(13): 5814-5818. https://doi.org/10.1073/pnas.89.13.5814

Wittkopp, P. J. and G. Kalay (2012). Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nature Reviews Genetics 13(1): 59-69.

Wu, R., L. Guo, R. Wang, Q. Zhang and H. Yao (2022). Genome-Wide Identification and Characterization of G2-Like Transcription Factor Genes in Moso Bamboo (Phyllostachys edulis). Molecules 27(17): 5491. https://doi.org/10.3390/molecules27175491

Xu, M., Q. Gao, M. Jiang, W. Wang, J. Hu, X. Chang, D. Liu, Y. Liang, Y. Jiang and F. Chen (2023). A novel genome sequence of Jasminum sambac helps uncover the molecular mechanism underlying the accumulation of jasmonates. Journal of Experimental Botany 74(4): 1275-1290. https://doi.org/10.1093/jxb/erac464

Yandell, M., C. J. Mungall, C. Smith, S. Prochnik, J. Kaminker, G. Hartzell, S. Lewis and G. M. Rubin (2006). Large-scale trends in the evolution of gene structures within 11 animal genomes. PLoS computational biology 2(3): e15. https://doi.org/10.1371/journal.pcbi.0020015

Yang, J., L. Ma, W. Jiang, Y. Yao, Y. Tang and Y. Pang (2021). Comprehensive identification and characterization of abiotic stress and hormone responsive glycosyl hydrolase family 1 genes in Medicago truncatula. Plant Physiology and Biochemistry 158: 21-33. https://doi.org/10.1016/j.plaphy.2020.11.046

Zhang, W. (2000). Phylogeny of the grass family (Poaceae) from rpl16 intron sequence data. Molecular Phylogenetics and Evolution 15(1): 135-146. https://doi.org/10.1006/mpev.1999.0729

Zhuang, H., Z. Guo, J. Wang and T. Chen (2024). Genome-wide identification and comprehensive analysis of the phytochrome-interacting factor (PIF) gene family in wheat. Plos one 19(1): e0296269. https://doi.org/10.1371/journal.pone.0296269

Zou, W., P. Lin, Z. Zhao, D. Wang, L. Qin, F. Xu, Y. Su, Q. Wu and Y. Que (2022). Genome-wide identification of auxin-responsive GH3 gene family in Saccharum and the expression of ScGH3-1 in stress response. International Journal of Molecular Sciences 23(21): 12750. https://doi.org/10.3390/ijms232112750

Downloads

Published

2025-01-26

How to Cite

RAZA, A., AYUB, M., & ABBAS, A. (2025). GENOME-WIDE IDENTIFICATION AND CHARACTERIZATION OF PBS3 PLANT-SPECIFIC  TRANSCRIPTION FACTOR GENE FAMILY IN CARROT SPECIES (DAUCUS CAROTA L.). Journal of Physical, Biomedical and Biological Sciences, 2025(1), 39. https://jpbab.com/index.php/home/article/view/39

Most read articles by the same author(s)

Similar Articles

1-10 of 35

You may also start an advanced similarity search for this article.