HARNESSING GENETIC DIVERSITY FOR SUSTAINABLE MAIZE PRODUCTION

Authors

  • R NAWAZ Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan Author
  • U RIAZ Institute of Horticultural Sciences, University of Agriculture Faisalabad, Pakistan Author
  • H GOUHAR Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan Author
  • M MUKHTAR Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan Author
  • A ARSHAD Center of Agricultural Biotechnology and Biochemistry, University of Agriculture Faisalabad, Pakistan Author
  • AA HUSSAIN Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan Author
  • A HAMID Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan Author
  • A MEHBOOB Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan Author
  • D SAFIULLAH Department of Forestry, New Mexico Highlands University, Las Vegas, NM, United States Author
  • MN KHALID Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan Author
  • I AMJAD Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan Author

Keywords:

Maize production, Genetic diversity, Sustainability, Agricultural resilience, Breeding strategies, Disease resistance, Abiotic stress adaptation, Nutritional enrichment

Abstract

This review article explores the pivotal role of genetic diversity in achieving sustainable maize production. The introduction emphasizes the critical importance of genetic variability, tracing its historical significance in maize cultivation. The comprehensive overview of genetic resources in maize elucidates natural variations, breeding strategies, and conservation efforts, providing a foundation for practical applications. The section on applications examines how genetic diversity contributes to disease resistance, pest tolerance, and adaptation to abiotic stresses, underscoring its multifaceted role in ensuring agricultural resilience. Beyond agronomic benefits, the review delves into the nutritional enrichment facilitated by genetic diversity, showcasing its potential to address malnutrition. Challenges and prospects form a crucial segment, addressing ethical and regulatory concerns associated with genetic diversity utilization. The discussion extends to technological advances, emphasizing the integration of modern tools and the potential synergy with traditional approaches for sustainable maize production. This review encapsulates the dynamic interplay between genetic diversity and sustainable maize agriculture, navigating historical contexts, scientific advancements, and ethical considerations. It provides a holistic perspective on the challenges and opportunities, offering insights that guide the trajectory of maize production towards resilience and sustainability in a rapidly changing agricultural landscape.

Downloads

Download data is not yet available.

References

Adhikari, S., Kumari, J., Jacob, S. R., Prasad, P., Gangwar, O., Lata, C., Thakur, R., Singh, A. K., Bansal, R., & Kumar, S. (2022). Landraces-potential treasure for sustainable wheat improvement. Genetic Resources and Crop Evolution, 69(2), 499-523.

Ainsworth, E. A., & Carmo-Silva, E. (2019). Harnessing genetic variation in metabolic traits to understand trait evolution and improve the sustainability of crop production. Current Opinion in Plant Biology, 49, A1-A3.

Ali, J., Xu, J.-L., Gao, Y.-M., Ma, X.-F., Meng, L.-J., Wang, Y., Pang, Y.-L., Guan, Y.-S., Xu, M.-R., & Revilleza, J. E. (2017). Harnessing the hidden genetic diversity for improving multiple abiotic stress tolerance in rice (Oryza sativa L.). PLoS One, 12(3), e0172515.

Ali, Q., Ahsan, M., Ali, F., Aslam, M., Khan, N. H., Munzoor, M., Mustafa, H. S. B., & Muhammad, S. (2013). Heritability, heterosis and heterobeltiosis studies for morphological traits of maize (Zea mays L.) seedlings. Advancements in Life Sciences, 1(1).

Ali, Q., Ahsan, M., Kanwal, N., Ali, F., Ali, A., Ahmed, W., Ishfaq, M., & Saleem, M. (2016). Screening for drought tolerance: comparison of maize hybrids under water deficit condition. Advancements in Life Sciences, 3(2), 51-58.

Allier, A., Teyssèdre, S., Lehermeier, C., Moreau, L., & Charcosset, A. (2020). Optimized breeding strategies to harness genetic resources with different performance levels. BMC genomics, 21, 1-16.

Bari, M. A. A., Zheng, P., Viera, I., Worral, H., Szwiec, S., Ma, Y., Main, D., Coyne, C. J., McGee, R. J., & Bandillo, N. (2021). Harnessing genetic diversity in the USDA pea germplasm collection through genomic prediction. Frontiers in Genetics, 12, 707754.

Bloch, S. E., Ryu, M.-H., Ozaydin, B., & Broglie, R. (2020). Harnessing atmospheric nitrogen for cereal crop production. Current Opinion in Biotechnology, 62, 181-188.

Buchanan‐Wollaston, V., Wilson, Z., Tardieu, F., Beynon, J., & Denby, K. (2017). Harnessing diversity from ecosystems to crops to genes. Food and Energy Security, 6(1), 19-25.

Ceoloni, C., Kuzmanović, L., Ruggeri, R., Rossini, F., Forte, P., Cuccurullo, A., & Bitti, A. (2017). Harnessing genetic diversity of wild gene pools to enhance wheat crop production and sustainability: Challenges and opportunities. Diversity, 9(4), 55.

Chen, Q., Li, W., Tan, L., & Tian, F. (2021). Harnessing knowledge from maize and rice domestication for new crop breeding. Molecular Plant, 14(1), 9-26.

Choudhary, M., Singh, V., Muthusamy, V., & Wani, S. H. (2017). Harnessing crop wild relatives for crop improvement.

Cortés, A. J., & López-Hernández, F. (2021). Harnessing crop wild diversity for climate change adaptation. Genes, 12(5), 783.

Ganguly, D. R., Hickey, L. T., & Crisp, P. A. (2022). Harnessing genetic variation at regulatory regions to fine-tune traits for climate-resilient crops. Molecular Plant, 15(2), 222-224.

Ghafoor, M., Ali, Q., & Malik, A. (2020). Effects of salicylic acid priming for salt stress tolerance in wheat. Biological and Clinical Sciences Research Journal, 2020(1).

Gorafi, Y. S. A., Kim, J.-S., Elbashir, A. A. E., & Tsujimoto, H. (2018). A population of wheat multiple synthetic derivatives: an effective platform to explore, harness and utilize genetic diversity of Aegilops tauschii for wheat improvement. Theoretical and Applied Genetics, 131, 1615-1626.

Gorjanc, G., Jenko, J., Hearne, S. J., & Hickey, J. M. (2016). Initiating maize pre-breeding programs using genomic selection to harness polygenic variation from landrace populations. BMC genomics, 17(1), 1-15.

Houston, R. D., Bean, T. P., Macqueen, D. J., Gundappa, M. K., Jin, Y. H., Jenkins, T. L., Selly, S. L. C., Martin, S. A., Stevens, J. R., & Santos, E. M. (2020). Harnessing genomics to fast-track genetic improvement in aquaculture. Nature Reviews Genetics, 21(7), 389-409.

Iqra, L., Rashid, M. S., Ali, Q., Latif, I., & Mailk, A. (2020). Evaluation for Na+/K+ ratio under salt stress condition in wheat. Life Sci J, 17(7), 43-47.

Jing, J., Gao, W., Cheng, L., Wang, X., Duan, F., Yuan, L., Rengel, Z., Zhang, F., Li, H., & Cahill Jr, J. F. (2022). Harnessing root-foraging capacity to improve nutrient-use efficiency for sustainable maize production. Field Crops Research, 279, 108462.

Kaur, K., Sharma, A., Mavi, G. S., Srivastava, P., Kaur, H., Sharma, H., Singh, S., Kushwah, A., & Sohu, V. S. (2022). Biofortified wheat: Harnessing genetic diversity for improved nutritional quality to eradicate hidden hunger. Crop science, 62(2), 802-819.

Martini, J. W., Molnar, T. L., Crossa, J., Hearne, S. J., & Pixley, K. V. (2021). Opportunities and challenges of predictive approaches for harnessing the potential of genetic resources. Frontiers in plant science, 12, 674036.

Masood, S. A., Jabeen, S., Anum, M., Naseem, Z., Jamshaid, A., & Ali, Q. (2015). Genetic Association of transcriptional factors (OsAP2 gene family) to incorporate drought tolerance in rice. Life Science Journal, 12(3s), 71-76.

Menkir, A., Maziya-Dixon, B., Mengesha, W., Rocheford, T., & Alamu, E. O. (2017). Accruing genetic gain in pro-vitamin A enrichment from harnessing diverse maize germplasm. Euphytica, 213, 1-12.

Messina, C. D., Gho, C., Hammer, G. L., Tang, T., & Cooper, M. (2023). Two decades of harnessing standing genetic variation for physiological traits to improve drought tolerance in maize. Journal of experimental botany, 74(16), 4847-4861.

Muqadas, S., Ali, Q., & Malik, A. (2020). Genetic association among seedling traits of Zea mays under multiple stresses of salts, heavy metals and drought. Biological and Clinical Sciences Research Journal, 2020(1).

Naseem, S., Ali, Q., & Malik, A. (2020). Evaluation of maize seedling traits under salt stress. Biological and Clinical Sciences Research Journal, 2020(1).

Nawaz, A., Haseeb, A., Malik, H., Ali, Q., & Malik, A. (2020). Genetic association among morphological traits of Zea mays seedlings under salt stress. Biological and Clinical Sciences Research Journal, 2020(1).

Pixley, K. V., Salinas-Garcia, G. E., Hall, A., Kropff, M., Ortiz, C., Bouvet, L. C., Suhalia, A., Vikram, P., & Singh, S. (2018). CIMMYT’s seeds of discovery initiative: harnessing biodiversity for food security and sustainable development. Indian Journal of Plant Genetic Resources, 31(01), 01-10.

Sarwar, M., Anjum, S., Alam, M. W., Ali, Q., Ayyub, C., Haider, M. S., Ashraf, M. I., & Mahboob, W. (2022). Triacontanol regulates morphological traits and enzymatic activities of salinity affected hot pepper plants. Scientific reports, 12(1), 3736.

Schultz, C., Brantley, K., & Wallace, J. (2021). The Role of Genetic Variation in Maize Response to Beneficial Endophytes. bioRxiv, 2021.2011. 2003.467096.

Schultz, C. R., Brantley, K. M., & Wallace, J. G. (2022). The role of genetic variation in Zea mays response to beneficial endophytes. Plant Growth Regulation, 98(1), 167-177.

Sharma, S., Pandey, M. K., Sudini, H. K., Upadhyaya, H. D., & Varshney, R. K. (2017). Harnessing genetic diversity of wild Arachis species for genetic enhancement of cultivated peanut. Crop science, 57(3), 1121-1131.

Singh, A. K., Singh, R., Velmurugan, A., Kumar, R. R., & Biswas, U. (2018). Harnessing genetic resources in field crops for developing resilience to climate change. In Biodiversity and Climate Change Adaptation in Tropical Islands (pp. 597-621). Elsevier.

Singh, R., Govindan, V., & Andersson, M. S. (2017). Zinc-biofortified wheat: harnessing genetic diversity for improved nutritional quality.

Topp, C. N., Bray, A. L., Ellis, N. A., & Liu, Z. (2016). How can we harness quantitative genetic variation in crop root systems for agricultural improvement? Journal of integrative plant biology, 58(3), 213-225.

Truong, S. K., McCormick, R. F., Rooney, W. L., & Mullet, J. E. (2015). Harnessing genetic variation in leaf angle to increase productivity of Sorghum bicolor. Genetics, 201(3), 1229-1238.

Downloads

Published

2023-11-30

How to Cite

NAWAZ, R., RIAZ, U., GOUHAR, H., MUKHTAR, M., ARSHAD, A., HUSSAIN, A., HAMID, A., MEHBOOB, A., SAFIULLAH, D., KHALID, M., & AMJAD, I. (2023). HARNESSING GENETIC DIVERSITY FOR SUSTAINABLE MAIZE PRODUCTION. Journal of Physical, Biomedical and Biological Sciences, 2023(1), 15. https://jpbab.com/index.php/home/article/view/15

Similar Articles

1-10 of 29

You may also start an advanced similarity search for this article.