ENHANCING WHEAT (TRITICUM AESTIVUM L.) YIELD THROUGH GENETIC MODIFICATION

Authors

  • A ABBAS Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan Author
  • T ALI Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan Author
  • AU REHMAN Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan Author
  • MZ ABBAS Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan Author

DOI:

https://doi.org/10.64013/jpbab.v2023i1.11

Keywords:

Bread Wheat, Biotic and Abiotic stress, Nutrients, Genetically modified

Abstract

Triticum aestivum L. or bread wheat, is an important crop species grown as a primary food source. With the increasing population, finding new ways to grow wheat genotypes with better qualities is important. The current task is to create varieties that produce more, are highly technologically advanced, and can handle a wide range of biotic and abiotic stresses. It is important to make healthier wheat types, like those with higher amounts of protein, zinc, iron, and other nutrients, because people's nutritional needs are worsening.

Downloads

Download data is not yet available.

References

Acharya, R., Karki, T. B., & Adhikari, B. (2022). Effect of Various Weed Management Practices on Weed Dynamics and Crop Yields under Maize-Wheat Cropping System of Western Hills. Agronomy Journal of Nepal, 6, 153-161. DOI: https://doi.org/10.3126/ajn.v6i1.47965

Adhikari, S., Kumari, J., Jacob, S. R., Prasad, P., Gangwar, O., Lata, C., Thakur, R., Singh, A. K., Bansal, R., & Kumar, S. (2022). Landraces-potential treasure for sustainable wheat improvement. Genetic Resources and Crop Evolution, 69(2), 499-523. DOI: https://doi.org/10.1007/s10722-021-01310-5

Ahmad, Z., Barutçular, C., Zia Ur Rehman, M., Sabir Tariq, R. M., Afzal, M., Waraich, E. A., Ahmad, A., Iqbal, M. A., Bukhari, M. A., & Ahmad, K. (2022). Pod shattering in canola reduced by mitigating drought stress through silicon application and molecular approaches-A review. Journal of Plant Nutrition, 46(1), 101-128. DOI: https://doi.org/10.1080/01904167.2022.2027972

Ali, Q., Ahsan, M., Ali, F., Aslam, M., Khan, N. H., Munzoor, M., Mustafa, H. S. B., & Muhammad, S. (2013). Heritability, heterosis and heterobeltiosis studies for morphological traits of maize (Zea mays L.) seedlings. Advancements in Life Sciences, 1(1).

Ali, Q., Ahsan, M., Kanwal, N., Ali, F., Ali, A., Ahmed, W., Ishfaq, M., & Saleem, M. (2016). Screening for drought tolerance: comparison of maize hybrids under water deficit condition. Advancements in Life Sciences, 3(2), 51-58.

Ameen, A., & Raza, S. (2017). Green revolution: a review. International Journal of Advances in Scientific Research, 3(12), 129-137. DOI: https://doi.org/10.7439/ijasr.v3i12.4410

Amirbakhtiar, N., Ismaili, A., Ghaffari, M. R., Nazarian Firouzabadi, F., & Shobbar, Z.-S. (2019). Transcriptome response of roots to salt stress in a salinity-tolerant bread wheat cultivar. PloS one, 14(3), e0213305. DOI: https://doi.org/10.1371/journal.pone.0213305

Asif, S., Ali, Q., & Malik, A. (2020). Evaluation of salt and heavy metal stress for seedling traits in wheat. Biological and Clinical Sciences Research Journal, 2020(1). DOI: https://doi.org/10.54112/bcsrj.v2020i1.5

Azeez, M. A., Adubi, A. O., & Durodola, F. A. (2018). Landraces and crop genetic improvement. In Rediscovery of Landraces as a Resource for the Future. IntechOpen. DOI: https://doi.org/10.5772/intechopen.75944

Azzopardi, J. A Review of the Science and Implications of the Green Revolution.

Bednarek, P. T., & Orłowska, R. (2020). Plant tissue culture environment as a switch-key of (epi) genetic changes. Plant Cell, Tissue and Organ Culture (PCTOC), 140(2), 245-257. DOI: https://doi.org/10.1007/s11240-019-01724-1

Bilgin, O., Guzmán, C., Başer, İ., Crossa, J., & Korkut, K. Z. (2016). Evaluation of grain yield and quality traits of bread wheat genotypes cultivated in Northwest Turkey. Crop Science, 56(1), 73-84. DOI: https://doi.org/10.2135/cropsci2015.03.0148

Bittman, M. (2021). Animal, vegetable, junk: A history of food, from sustainable to suicidal. Houghton Mifflin.

Bo, C., Fan, Z., Ma, X., Li, A., Wang, H., Kong, L., & Wang, X. (2022). Identification and Introgression of a Novel HMW-GS Gene from Aegilops tauschii. Agronomy, 12(11), 2709. DOI: https://doi.org/10.3390/agronomy12112709

Borisjuk, N., Kishchenko, O., Eliby, S., Schramm, C., Anderson, P., Jatayev, S., Kurishbayev, A., & Shavrukov, Y. (2019). Genetic modification for wheat improvement: from transgenesis to genome editing. BioMed Research International, 2019. DOI: https://doi.org/10.1155/2019/6216304

Börner, A. (2021). Fusarium Head Blight and Rust Diseases in Soft Red Winter Wheat in the Southeast United States: State of the Art, Challenges and Future Perspective for Breeding. Fungal Wheat Diseases: Etiology, Breeding, and Integrated Management.

Castro-Camba, R., Sánchez, C., Vidal, N., & Vielba, J. M. (2022). Plant development and crop yield: The role of gibberellins. Plants, 11(19), 2650. DOI: https://doi.org/10.3390/plants11192650

Chachar, Z., Khan, S. U., ZHANG, X.-h., LENG, P.-f., Na, Z., & Jun, Z. (2023). Characterization of transgenic wheat lines expressing maize ABP7 involved in kernel development. Journal of Integrative Agriculture, 22(2), 389-399. DOI: https://doi.org/10.1016/j.jia.2022.08.052

Clark, M., & Maselko, M. (2020). Transgene biocontainment strategies for molecular farming. Frontiers in Plant Science, 11, 210. DOI: https://doi.org/10.3389/fpls.2020.00210

Collins, D., Emebiri, L., Tan, M.-K., El Bouhssini, M., & Wildman, O. (2018). Association of KASP markers with Hessian fly resistance in wheat of diverse origin. Euphytica, 214(8), 144. DOI: https://doi.org/10.1007/s10681-018-2228-x

Conway, G. (2019). The doubly green revolution: food for all in the twenty-first century. Cornell University Press.

Das, S., Chaki, A. K., & Hossain, A. (2019). Breeding and agronomic approaches for the biofortification of zinc in wheat (Triticum aestivum L.) to combat zinc deficiency in millions of a population: A Bangladesh perspective. Acta Agrobotanica, 72(2). DOI: https://doi.org/10.5586/aa.1770

de Sousa, T., Ribeiro, M., Sabença, C., & Igrejas, G. (2021). The 10,000-year success story of wheat! Foods, 10(9), 2124. DOI: https://doi.org/10.3390/foods10092124

Derman, S. S. (2020). Protoplast-based biotechnology methods for Vitis vinifera Stellenbosch: Stellenbosch University].

Dosad, S., & Chawla, H. (2018). Genetic transformation of millets: the way ahead. Biotechnologies of Crop Improvement, Volume 2: Transgenic Approaches, 249-286. DOI: https://doi.org/10.1007/978-3-319-90650-8_11

Edge, M., Oikeh, S. O., Kyetere, D., Mugo, S., & Mashingaidze, K. (2018). Water efficient maize for Africa: A public-private partnership in technology transfer to smallholder farmers in sub-Saharan Africa. From agriscience to agribusiness: Theories, policies and practices in technology transfer and commercialization, 391-412. DOI: https://doi.org/10.1007/978-3-319-67958-7_19

Espinosa-Ramírez, J., Serna-Saldívar, S. O., Lazo-Vélez, M. A., & Pérez-Carrillo, E. (2021). Impact of preharvest and controlled sprouting on wheat and bread quality. Trends in wheat and bread making, 95-128. DOI: https://doi.org/10.1016/B978-0-12-821048-2.00004-0

Farooq, M., Bashir, M., Khan, M., Iqbal, B., & Ali, Q. (2021). Role of crispr to improve abiotic stress tolerance in crop plants. Biological and Clinical Sciences Research Journal, 2021(1). DOI: https://doi.org/10.54112/bcsrj.v2021i1.69

Fu, L., Wu, D., Zhang, X., Xu, Y., Kuang, L., Cai, S., Zhang, G., & Shen, Q. (2022). Vacuolar H+-pyrophosphatase HVP10 enhances salt tolerance via promoting Na+ translocation into root vacuoles. Plant Physiology, 188(2), 1248-1263. DOI: https://doi.org/10.1093/plphys/kiab538

Gao, B., Bian, X.-C., Yang, F., Chen, M.-X., Das, D., Zhu, X.-R., Jiang, Y., Zhang, J., Cao, Y.-Y., & Wu, C.-F. (2020). Comprehensive transcriptome analysis of faba bean in response to vernalization. Planta, 251, 1-15. DOI: https://doi.org/10.1007/s00425-019-03308-x

Gao, C. (2021). Genome engineering for crop improvement and future agriculture. Cell, 184(6), 1621-1635. DOI: https://doi.org/10.1016/j.cell.2021.01.005

Garvin, D. F., & Dykes, L. (2021). Evaluating milling and baking quality associated with a Fusarium head blight resistance-enhancing genome deletion in wheat. Cereal Research Communications, 1-7. DOI: https://doi.org/10.1007/s42976-020-00122-0

Ghafoor, M., Ali, Q., & Malik, A. (2020). Effects of salicylic acid priming for salt stress tolerance in wheat. Biological and Clinical Sciences Research Journal, 2020(1). DOI: https://doi.org/10.54112/bcsrj.v2020i1.24

Gheysen, G., Angenon, G., & Van Montagu, M. (2022). Agrobacterium-mediated plant transformation: a scientifically intriguing story with significant applications. In Transgenic plant research (pp. 1-34). Routledge. DOI: https://doi.org/10.1201/9780203735206-1

Ghimire, B., Sapkota, S., Bahri, B. A., Martinez-Espinoza, A. D., Buck, J. W., & Mergoum, M. (2020). Fusarium head blight and rust diseases in soft red winter wheat in the southeast United States: State of the art, challenges and future perspective for breeding. Frontiers in Plant Science, 11, 1080. DOI: https://doi.org/10.3389/fpls.2020.01080

Gomez, A., Narayan, M., Zhao, L., Jia, X., Bernal, R. A., Lopez-Moreno, M. L., & Peralta-Videa, J. R. (2021). Effects of nano-enabled agricultural strategies on food quality: Current knowledge and future research needs. Journal of Hazardous Materials, 401, 123385. DOI: https://doi.org/10.1016/j.jhazmat.2020.123385

Guo, M., Ye, J., Gao, D., Xu, N., & Yang, J. (2019). Agrobacterium-mediated horizontal gene transfer: Mechanism, biotechnological application, potential risk and forestalling strategy. Biotechnology advances, 37(1), 259-270. DOI: https://doi.org/10.1016/j.biotechadv.2018.12.008

Gupta, P. K., Balyan, H. S., Sharma, S., & Kumar, R. (2020). Genetics of yield, abiotic stress tolerance and biofortification in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 133, 1569-1602. DOI: https://doi.org/10.1007/s00122-020-03583-3

Guzmán, C., Ibba, M. I., Álvarez, J. B., Sissons, M., & Morris, C. (2022). Wheat quality. In Wheat Improvement: Food Security in a Changing Climate (pp. 177-193). Springer International Publishing Cham. DOI: https://doi.org/10.1007/978-3-030-90673-3_11

Hasan, M. M., Chopin, J. P., Laga, H., & Miklavcic, S. J. (2018). Detection and analysis of wheat spikes using convolutional neural networks. Plant Methods, 14, 1-13. DOI: https://doi.org/10.1186/s13007-018-0366-8

Headrick, D. R. (2020). Humans versus nature: a global environmental history. Oxford University Press, USA.

Hossain, A., Skalicky, M., Brestic, M., Maitra, S., Ashraful Alam, M., Syed, M. A., Hossain, J., Sarkar, S., Saha, S., & Bhadra, P. (2021). Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum L.) under the changing climate. Agronomy, 11(2), 241. DOI: https://doi.org/10.3390/agronomy11020241

Huang, X., Hilscher, J., Stoger, E., Christou, P., & Zhu, C. (2021). Modification of cereal plant architecture by genome editing to improve yields. Plant Cell Reports, 40, 953-978. DOI: https://doi.org/10.1007/s00299-021-02668-7

Hussain, M. I., Araniti, F., Schulz, M., Baerson, S., Vieites-Álvarez, Y., Rempelos, L., Bilsborrow, P., Chinchilla, N., Macías, F. A., & Weston, L. A. (2022). Benzoxazinoids in wheat allelopathy–From discovery to application for sustainable weed management. Environmental and Experimental Botany, 202, 104997. DOI: https://doi.org/10.1016/j.envexpbot.2022.104997

Iqra, L., Rashid, M. S., Ali, Q., Latif, I., & Mailk, A. (2020). Evaluation for Na+/K+ ratio under salt stress condition in wheat. Life Sci J, 17(7), 43-47. DOI: https://doi.org/10.54112/bcsrj.v2020i1.16

Jägermeyr, J., Robock, A., Elliott, J., Müller, C., Xia, L., Khabarov, N., Folberth, C., Schmid, E., Liu, W., & Zabel, F. (2020). A regional nuclear conflict would compromise global food security. Proceedings of the National Academy of Sciences, 117(13), 7071-7081. DOI: https://doi.org/10.1073/pnas.1919049117

Jain, N., Khurana, P., & Khurana, J. P. (2022). A rapid and efficient protocol for genotype-independent, Agrobacterium-mediated transformation of indica and japonica rice using mature seed-derived embryogenic calli. Plant Cell, Tissue and Organ Culture (PCTOC), 151(1), 59-73. DOI: https://doi.org/10.1007/s11240-022-02331-3

Johansson, E., Branlard, G., Cuniberti, M., Flagella, Z., Hüsken, A., Nurit, E., Peña, R. J., Sissons, M., & Vazquez, D. (2020). Genotypic and environmental effects on wheat technological and nutritional quality. Wheat quality for improving processing and human health, 171-204. DOI: https://doi.org/10.1007/978-3-030-34163-3_8

Johansson, E., Henriksson, T., Prieto-Linde, M. L., Andersson, S., Ashraf, R., & Rahmatov, M. (2020). Diverse wheat-alien introgression lines as a basis for durable resistance and quality characteristics in bread wheat. Frontiers in Plant Science, 11, 1067. DOI: https://doi.org/10.3389/fpls.2020.01067

Kashif, M., Wani, S. H., & Shaukat, S. (2021). Wheat wild germplasm: a hidden treasure. In Wild Germplasm for Genetic Improvement in Crop Plants (pp. 55-63). Elsevier. DOI: https://doi.org/10.1016/B978-0-12-822137-2.00003-5

Kumar, P., Patni, B., & Singh, M. (2022). Wheat Genome Sequence opens new opportunities to understand the genetic basis of frost tolerance (FT) and marker-assisted breeding in wheat (Triticum aestivum L.). Journal of Stress Physiology & Biochemistry, 18(1), 17-27.

Kuzmanović, N., Puławska, J., Hao, L., & Burr, T. J. (2018). The ecology of Agrobacterium vitis and management of crown gall disease in vineyards. Agrobacterium Biology: From Basic Science to Biotechnology, 15-53. DOI: https://doi.org/10.1007/82_2018_85

Liu, Z., Gao, F., Liu, Y., Yang, J., Zhen, X., Li, X., Li, Y., Zhao, J., Li, J., & Qian, B. (2019). Timing and splitting of nitrogen fertilizer supply to increase crop yield and efficiency of nitrogen utilization in a wheat–peanut relay intercropping system in China. The Crop Journal, 7(1), 101-112. DOI: https://doi.org/10.1016/j.cj.2018.08.006

Ljubojević, M. (2021). Horticulturalization of the 21st century cities. Scientia Horticulturae, 288, 110350. DOI: https://doi.org/10.1016/j.scienta.2021.110350

Lowe, K., La Rota, M., Hoerster, G., Hastings, C., Wang, N., Chamberlin, M., Wu, E., Jones, T., & Gordon-Kamm, W. (2018). Rapid genotype “independent” Zea mays L.(maize) transformation via direct somatic embryogenesis. In Vitro Cellular & Developmental Biology-Plant, 54, 240-252. DOI: https://doi.org/10.1007/s11627-018-9905-2

Masood, S. A., Jabeen, S., Anum, M., Naseem, Z., Jamshaid, A., & Ali, Q. (2015). Genetic Association of transcriptional factors (OsAP2 gene family) to incorporate drought tolerance in rice. Life Science Journal, 12(3s), 71-76.

Meftaul, I. M., Venkateswarlu, K., Dharmarajan, R., Annamalai, P., Asaduzzaman, M., Parven, A., & Megharaj, M. (2020). Controversies over human health and ecological impacts of glyphosate: Is it to be banned in modern agriculture? Environmental Pollution, 263, 114372. DOI: https://doi.org/10.1016/j.envpol.2020.114372

Metwally, K. Y. M., Said, A. E.-G. S., & Ibrahim, M. T. G. (2020). A standard analysis of Egyptian foreign trade structure for wheat. Bulletin of the National Research Centre, 44(1). DOI: https://doi.org/10.1186/s42269-020-0273-9

Mir, R. R., Reynolds, M., Pinto, F., Khan, M. A., & Bhat, M. A. (2019). High-throughput phenotyping for crop improvement in the genomics era. Plant Science, 282, 60-72. DOI: https://doi.org/10.1016/j.plantsci.2019.01.007

Mohammed, S., Abd Samad, A., & Rahmat, Z. (2019). Agrobacterium-mediated transformation of rice: constraints and possible solutions. Rice Science, 26(3), 133-146. DOI: https://doi.org/10.1016/j.rsci.2019.04.001

Morris, C. F. (2019). The antimicrobial properties of the puroindolines, a review. World Journal of Microbiology and Biotechnology, 35(6), 86. DOI: https://doi.org/10.1007/s11274-019-2655-4

Munaweera, T., Jayawardana, N., Rajaratnam, R., & Dissanayake, N. (2022). Modern plant biotechnology as a strategy in addressing climate change and attaining food security. Agriculture & Food Security, 11(1), 1-28. DOI: https://doi.org/10.1186/s40066-022-00369-2

Nakka, S., Jugulam, M., Peterson, D., & Asif, M. (2019). Herbicide resistance: Development of wheat production systems and current status of resistant weeds in wheat cropping systems. The Crop Journal, 7(6), 750-760. DOI: https://doi.org/10.1016/j.cj.2019.09.004

Naseem, S., Ali, Q., & Malik, A. (2020). Evaluation of maize seedling traits under salt stress. Biological and Clinical Sciences Research Journal, 2020(1). DOI: https://doi.org/10.54112/bcsrj.v2020i1.25

Nawaz, A., Haseeb, A., Malik, H., Ali, Q., & Malik, A. (2020). Genetic association among morphological traits of Zea mays seedlings under salt stress. Biological and Clinical Sciences Research Journal, 2020(1). DOI: https://doi.org/10.54112/bcsrj.v2020i1.21

Nelson, R., Wiesner-Hanks, T., Wisser, R., & Balint-Kurti, P. (2018). Navigating complexity to breed disease-resistant crops. Nature Reviews Genetics, 19(1), 21-33. DOI: https://doi.org/10.1038/nrg.2017.82

Nemacheck, J. A., Schemerhorn, B. J., Scofield, S. R., & Subramanyam, S. (2019). Phenotypic and molecular characterization of Hessian fly resistance in diploid wheat, Aegilops tauschii. BMC plant biology, 19(1), 1-17. DOI: https://doi.org/10.1186/s12870-019-2058-6

Ngcamphalala, W. (2018). Initiation of a wheat pre-breeding effort aimed at yield improvement using male-sterility marker assisted recurrent selection Stellenbosch: Stellenbosch University].

Ngwangum, N. J., Tayade, R., Liny, L., Yoon, J.-B., Chung, Y.-S., & Kim, Y. (2022). Utilization of Imaging Data from Different Sources for Bacterial and Fungal Diseases Detection in Major Crops in the Digital Era: A Review. Journal of Agricultural, Life and Environmental Sciences, 34(2), 97-117.

Nowicka, B., Ciura, J., Szymańska, R., & Kruk, J. (2018). Improving photosynthesis, plant productivity and abiotic stress tolerance–current trends and future perspectives. Journal of plant physiology, 231, 415-433. DOI: https://doi.org/10.1016/j.jplph.2018.10.022

Olaerts, H., Vandekerckhove, L., & Courtin, C. M. (2018). A closer look at the bread making process and the quality of bread as a function of the degree of preharvest sprouting of wheat (Triticum aestivum). Journal of Cereal Science, 80, 188-197. DOI: https://doi.org/10.1016/j.jcs.2018.03.004

Omedi, J. O., Huang, W., Zhang, B., Li, Z., & Zheng, J. (2019). Advances in present‐day frozen dough technology and its improver and novel biotech ingredients development trends—A review. Cereal Chemistry, 96(1), 34-56. DOI: https://doi.org/10.1002/cche.10122

Ozyigit, I. I., & Yucebilgili Kurtoglu, K. (2020). Particle bombardment technology and its applications in plants. Molecular Biology Reports, 47, 9831-9847. DOI: https://doi.org/10.1007/s11033-020-06001-5

Padgette, S. R., Re, D. B., Barry, G. F., Eichholtz, D. E., Xavier, D., Fuchs, R. L., Kishore, G. M., & Fraley, R. T. (2018). New weed control opportunities: development of soybeans with a Roundup Ready™ gene. In Herbicide-resistant crops (pp. 53-84). CRC Press. DOI: https://doi.org/10.1201/9781351073196-4

Pandurangan, S., Workman, C., Nilsen, K., & Kumar, S. (2021). Introduction to marker-assisted selection in wheat breeding. In Accelerated breeding of cereal crops (pp. 77-117). Springer. DOI: https://doi.org/10.1007/978-1-0716-1526-3_3

Parray, J. A., Yaseen Mir, M., Shameem, N., Parray, J. A., Yaseen Mir, M., & Shameem, N. (2019). Plant genetic engineering and GM crops: merits and demerits. Sustainable agriculture: biotechniques in plant biology, 155-229. DOI: https://doi.org/10.1007/978-981-13-8840-8_4

Pratiwi, R. A., & Surya, M. I. (2020). Agrobacterium-mediated transformation. Genetic Transformation in Crops.

Pretorius, L.-S. (2018). Investigation of virus-induced defence modulations during plant-virus interactions.

Purwantoro, A., Purwestri, Y. A., Lawrie, M. D., & Semiarti, E. (2022). Genetic transformation via plant tissue culture techniques: Current and future approaches. In Advances in Plant Tissue Culture (pp. 131-156). Elsevier. DOI: https://doi.org/10.1016/B978-0-323-90795-8.00001-1

Ratajczak, K., Sulewska, H., Grażyna, S., & Matysik, P. (2020). Agronomic traits and grain quality of selected spelt wheat varieties versus common wheat. Journal of Crop Improvement, 34(5), 654-675. DOI: https://doi.org/10.1080/15427528.2020.1761921

Raza, A., Tabassum, J., Kudapa, H., & Varshney, R. K. (2021). Can omics deliver temperature resilient ready-to-grow crops? Critical Reviews in Biotechnology, 41(8), 1209-1232. DOI: https://doi.org/10.1080/07388551.2021.1898332

Riseh, R. S., Hassanisaadi, M., Vatankhah, M., Babaki, S. A., & Barka, E. A. (2022). Chitosan as potential natural compound to manage plant diseases. International Journal of Biological Macromolecules. DOI: https://doi.org/10.1016/j.ijbiomac.2022.08.109

Sarkar, R. K., Reddy, J. N., & Das, S. R. (2021). Molecular Breeding for Improving Flooding Tolerance in Rice: Recent Progress and Future Perspectives. Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality, 75-91. DOI: https://doi.org/10.1002/9781119633174.ch4

Sarwar, M., Anjum, S., Alam, M. W., Ali, Q., Ayyub, C., Haider, M. S., Ashraf, M. I., & Mahboob, W. (2022). Triacontanol regulates morphological traits and enzymatic activities of salinity affected hot pepper plants. Scientific reports, 12(1), 3736. DOI: https://doi.org/10.1038/s41598-022-06516-w

Sarwar, M., Anjum, S., Ali, Q., Alam, M. W., Haider, M. S., & Mehboob, W. (2021). Triacontanol modulates salt stress tolerance in cucumber by altering the physiological and biochemical status of plant cells. Scientific reports, 11(1), 24504. DOI: https://doi.org/10.1038/s41598-021-04174-y

Sehgal, A., Sita, K., Siddique, K. H., Kumar, R., Bhogireddy, S., Varshney, R. K., HanumanthaRao, B., Nair, R. M., Prasad, P. V., & Nayyar, H. (2018). Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Frontiers in Plant Science, 9, 1705. DOI: https://doi.org/10.3389/fpls.2018.01705

Sen, A. (2021). Integrative expressional regulation of Ta HKT2; 1, Ta Na+/H+ vacuolar antiporter, and Ta SOS1 genes improve salt tolerance in gamma-ray induced bread wheat mutants. Cereal Research Communications, 49(4), 599-606. DOI: https://doi.org/10.1007/s42976-020-00128-8

Shafique, F., Ali, Q., & Malik, A. (2020). Effects of heavy metal toxicity on maze seedlings growth traits. Biological and Clinical Sciences Research Journal, 2020(1). DOI: https://doi.org/10.54112/bcsrj.v2020i1.27

Shailani, A., Joshi, R., Singla‐Pareek, S. L., & Pareek, A. (2021). Stacking for future: Pyramiding genes to improve drought and salinity tolerance in rice. Physiologia Plantarum, 172(2), 1352-1362. DOI: https://doi.org/10.1111/ppl.13270

Shao, G., Lu, Z., Xiong, J., Wang, B., Jing, Y., Meng, X., Liu, G., Ma, H., Liang, Y., & Chen, F. (2019). Tiller bud formation regulators MOC1 and MOC3 cooperatively promote tiller bud outgrowth by activating FON1 expression in rice. Molecular plant, 12(8), 1090-1102. DOI: https://doi.org/10.1016/j.molp.2019.04.008

Sheehan, H., & Bentley, A. (2021). Changing times: Opportunities for altering winter wheat phenology. Plants, People, Planet, 3(2), 113-123. DOI: https://doi.org/10.1002/ppp3.10163

Shelenga, T. V., Kerv, Y. A., Perchuk, I. N., E. Solovyeva, A., Khlestkina, E. K., G. Loskutov, I., & Konarev, A. V. (2021). The potential of small grains crops in enhancing biofortification breeding strategies for human health benefit. Agronomy, 11(7), 1420. DOI: https://doi.org/10.3390/agronomy11071420

Shrawat, A. K., & Armstrong, C. L. (2018). Development and application of genetic engineering for wheat improvement. Critical Reviews in Plant Sciences, 37(5), 335-421. DOI: https://doi.org/10.1080/07352689.2018.1514718

Singh, J., Chhabra, B., Raza, A., Yang, S. H., & Sandhu, K. S. (2023). Important wheat diseases in the US and their management in the 21st century. Frontiers in Plant Science, 13, 1010191. DOI: https://doi.org/10.3389/fpls.2022.1010191

Singh, K. (2018). Evolution of Ph1 Gene and Its Use in Wheat Improvement. Washington State University.

Srivastava, R., Panda, R., Chakraborty, A., & Halder, D. (2018). Enhancing grain yield, biomass and nitrogen use efficiency of maize by varying sowing dates and nitrogen rate under rainfed and irrigated conditions. Field Crops Research, 221, 339-349. DOI: https://doi.org/10.1016/j.fcr.2017.06.019

Su, W., Xu, M., Radani, Y., & Yang, L. (2023). Technological Development and Application of Plant Genetic Transformation. International Journal of Molecular Sciences, 24(13), 10646. DOI: https://doi.org/10.3390/ijms241310646

Takahama, U., & Hirota, S. (2018). Interactions of flavonoids with α-amylase and starch slowing down its digestion. Food & Function, 9(2), 677-687. DOI: https://doi.org/10.1039/C7FO01539A

Tian, B., Talukder, S. K., Fu, J., Fritz, A. K., & Trick, H. N. (2018). Expression of a rice soluble starch synthase gene in transgenic wheat improves the grain yield under heat stress conditions. In Vitro Cellular & Developmental Biology-Plant, 54, 216-227. DOI: https://doi.org/10.1007/s11627-018-9893-2

Tonosaki, K., Fujimoto, R., Dennis, E. S., Raboy, V., & Osabe, K. (2022). Will epigenetics be a key player in crop breeding? Frontiers in Plant Science, 13, 958350. DOI: https://doi.org/10.3389/fpls.2022.958350

Twizerimana, A., Niyigaba, E., Mugenzi, I., Ngnadong, W. A., Li, C., Hao, T. Q., Shio, B. J., & Hai, J. B. (2020). The combined effect of different sowing methods and seed rates on the quality features and yield of winter wheat. Agriculture, 10(5), 153. DOI: https://doi.org/10.3390/agriculture10050153

Tylecote, A. (2019). Biotechnology as a new techno-economic paradigm that will help drive the world economy and mitigate climate change. Research Policy, 48(4), 858-868. DOI: https://doi.org/10.1016/j.respol.2018.10.001

Wang, K., Gong, Q., & Ye, X. (2020). Recent developments and applications of genetic transformation and genome editing technologies in wheat. Theoretical and Applied Genetics, 133, 1603-1622. DOI: https://doi.org/10.1007/s00122-019-03464-4

Wang, X., Xu, Y., Hu, Z., & Xu, C. (2018). Genomic selection methods for crop improvement: Current status and prospects. The Crop Journal, 6(4), 330-340. DOI: https://doi.org/10.1016/j.cj.2018.03.001

Wieser, H., Koehler, P., & Scherf, K. A. (2023). Chemistry of wheat gluten proteins: Qualitative composition. Cereal Chemistry, 100(1), 23-35. DOI: https://doi.org/10.1002/cche.10572

Williams, R. M., Diepeveen, D. A., & Evans, F. H. (2019). Using big data to predict the likelihood of low falling numbers in wheat. Cereal Chemistry, 96(3), 411-420. DOI: https://doi.org/10.1002/cche.10140

Xiong, R., Liu, S., Considine, M. J., Siddique, K. H., Lam, H. M., & Chen, Y. (2021). Root system architecture, physiological and transcriptional traits of soybean (Glycine max L.) in response to water deficit: A review. Physiologia Plantarum, 172(2), 405-418. DOI: https://doi.org/10.1111/ppl.13201

Yali, W. (2022). Application of Genetically Modified Organism (GMO) crop technology and its implications in modern agriculture. Int. J. Appl. Agric. Sci, 8, 14-20. DOI: https://doi.org/10.11648/j.ijaas.20220801.11

Yen, C., & Yang, J. (2020). Biosystematics of Triticeae: Volume I. Triticum-Aegilops complex. Springer Nature. DOI: https://doi.org/10.1007/978-981-13-9931-2

Yıldırım, A., Sönmezoğlu, Ö. A., Sayaslan, A., Kandemir, N., & Gökmen, S. (2019). Molecular breeding of durum wheat cultivars for pasta quality. Quality Assurance and Safety of Crops & Foods, 11(1), 15-21. DOI: https://doi.org/10.3920/QAS2017.1236

Yousuf, M., & Alim, D. (2020). Selection and Hybridization Techniques for Stress Management and Quality Improvement in Rice. Rice Research for Quality Improvement: Genomics and Genetic Engineering: Volume 1: Breeding Techniques and Abiotic Stress Tolerance, 201-220. DOI: https://doi.org/10.1007/978-981-15-4120-9_8

Zahan, T., Hossain, M. F., Chowdhury, A. K., Ali, M. O., Ali, M. A., Dessoky, E. S., Hassan, M. M., Maitra, S., & Hossain, A. (2021). Herbicide in weed management of wheat (Triticum aestivum L.) and rainy season rice (Oryza sativa L.) under conservation agricultural system. Agronomy, 11(9), 1704. DOI: https://doi.org/10.3390/agronomy11091704

Zaman, R. (2019). Investigation and survey on diseases of tuberose (Polianthes tuberosa L.) in Jashore district of Bangladesh DEPARTMENT OF PLANT PATHOLOGY, SHER-E-BANGLA AGRICULTURAL UNIVERSITY, DHAKA-1207].

Zhang, H., Li, Y., & Zhu, J.-K. (2018). Developing naturally stress-resistant crops for a sustainable agriculture. Nature plants, 4(12), 989-996. DOI: https://doi.org/10.1038/s41477-018-0309-4

Zingale, S., Spina, A., Ingrao, C., Fallico, B., Timpanaro, G., Anastasi, U., & Guarnaccia, P. (2023). Factors Affecting the Nutritional, Health, and Technological Quality of Durum Wheat for Pasta-Making: A Systematic Literature Review. Plants, 12(3), 530. DOI: https://doi.org/10.3390/plants12030530

Zribi, I., Ghorbel, M., & Brini, F. (2021). Pathogenesis related proteins (PRs): From cellular mechanisms to plant defense. Current Protein and Peptide Science, 22(5), 396-412. DOI: https://doi.org/10.2174/1389203721999201231212736

Zubair, M., Shakir, M., Ali, Q., Rani, N., Fatima, N., Farooq, S., Shafiq, S., Kanwal, N., Ali, F., & Nasir, I. A. (2016). Rhizobacteria and phytoremediation of heavy metals. Environmental Technology Reviews, 5(1), 112-119. DOI: https://doi.org/10.1080/21622515.2016.1259358

Downloads

Published

2023-11-11

How to Cite

ABBAS, A., ALI, T., REHMAN, A., & ABBAS, M. (2023). ENHANCING WHEAT (TRITICUM AESTIVUM L.) YIELD THROUGH GENETIC MODIFICATION. Journal of Physical, Biomedical and Biological Sciences, 2023(1), 11. https://doi.org/10.64013/jpbab.v2023i1.11

Most read articles by the same author(s)

Similar Articles

11-20 of 20

You may also start an advanced similarity search for this article.