ROLE OF SOMATIC CELL HYBRIDIZATION FOR CONTRIBUTION TO CROP IMPROVEMENT
DOI:
https://doi.org/10.64013/jpbab.v2026i1.51Keywords:
Hybrid, Hybridization, Somatic, Crop improvement, Protoplast fusionAbstract
Breeders have successfully leveraged genetic heterogeneity within the species to enhance crop quality. Large have been made to expand the current crop gene pool since, for modern plant breeding objectives, the variability found in a breeding population may not be sufficient. Mostly, sexual crossovers between distinct genotypes within or across closely related species have provided the basis for the introduction of novel features. The potential to alter and enhance food plants has been limited, though, as gene transfer has only been possible among sexually compatible species because of multiple reproductive hurdles. Only closely related species or even unrelated creatures may possess several desirable and intriguing agronomic traits. Much work has gone into locating, isolating, and transferring these genes into crops because they represent a potential genetic resource. Thanks to the quick advancement of somatic cell genetics, there are now ways to transmit genes across taxonomic boundaries and beyond sexual boundaries. Somatic hybridization is useful not just for the transfer of unknown genes but also for modifying and enhancing polygenic features. Furthermore, since a hybrid cell with a mixture of the two fusion partners is produced, somatic hybridization allows for the change of genetic material. Somatic hybridization is the process of creating hybrid plants by fusing the protoplasts of two distinct plant species or kinds; these hybrids are referred to as somatic hybrids. Thus, only in cases when all of the following two requirements are met—i) large-scale protoplast isolation and ii) totipotency of the separated protoplasts—can somatic hybridization be used. Generally speaking, somatic hybridization is a useful technique for improving crops and plant breeding by creating interspecific and intergeneric hybrids. Asexual and sterile plants can benefit from it, as can those whose sexual compatibility with other species is compromised.
Downloads
References
Abe, S., and Takeda, J. (1988). Effects of La3+ on surface charges, dielectrophoresis, and electrofusion of barley protoplasts. Plant physiology 87, 389-394. https://doi.org/10.1104/pp.87.2.389 DOI: https://doi.org/10.1104/pp.87.2.389
Anné, J., and Peberdy, J. F. (2020). Protoplast Fusion and Interspecies Hybridization in Penicfflium. In "Fungal protoplasts", pp. 259-277. CRC Press. https://doi.org/10.1201/9781003065173 DOI: https://doi.org/10.1201/9781003065173-16
Begna, T. (2020). Review on somatic hybridization and its role in crop improvement. J Biol Agric Healthc [Internet] 10. https://doi.org/10.7176/JBAH/10-11-04 DOI: https://doi.org/10.7176/JBAH/10-11-04
Begna, T. (2021). Conventional breeding methods widely used to improve self-pollinated crops. International Journal of Research 7, 1-16. https://doi.org/10.20431/2454-6224.0701001 DOI: https://doi.org/10.20431/2454-6224.0701001
Bengochea, T. (2012). "Plant protoplasts: a biotechnological tool for plant improvement," Springer Science & Business Media. https://doi.org/10.1007/978-94-009-4095-6 DOI: https://doi.org/10.1007/978-94-009-4095-6
Bhojwani, S. S., and Dantu, P. K. (2013). "Plant tissue culture: an introductory text," Springer. DOI: https://doi.org/10.1007/978-81-322-1026-9
Bire, S., and Rouleux-Bonnin, F. (2012). Transposable elements as tools for reshaping the genome: it is a huge world after all! Mobile Genetic Elements: Protocols and Genomic Applications, 1-28. https://doi.org/10.1007/978-1-61779-603-6_1 DOI: https://doi.org/10.1007/978-1-61779-603-6_1
Blackhall, N., Davey, M., and Power, J. (1994). Applications of protoplast technology. Plant cell culture 2, 41-48. https://doi.org/10.1038/nbt0583-253 DOI: https://doi.org/10.1093/oso/9780199634033.003.0003
Bohra, A., Jha, U. C., Adhimoolam, P., Bisht, D., and Singh, N. P. (2016). Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. Plant cell reports 35, 967-993. https://doi.org/10.1007/s00299-016-1949-3 DOI: https://doi.org/10.1007/s00299-016-1949-3
Borlaug, N. E. (1983). Contributions of conventional plant breeding to food production. Science 219, 689-693. https://doi.org/10.1126/science.219.4585.689 DOI: https://doi.org/10.1126/science.219.4585.689
Bottino, P. (1975). The potential of genetic manipulation in plant cell cultures for plant breeding. Radiation Botany 15, 1-16. https://doi.org/10.1016/S0033-7560(75)80009-3 DOI: https://doi.org/10.1016/S0033-7560(75)80009-3
Bradshaw, J. E. (2017). Plant breeding: past, present and future. Euphytica 213, 1-12. https://doi.org/10.1007/s10681-016-1815-y DOI: https://doi.org/10.1007/s10681-016-1815-y
Cocking, E. C. (1972). Plant cell protoplasts-isolation and development. Annual Review of Plant Physiology 23, 29-50. https://doi.org/10.1007/s10681-016-1815-y DOI: https://doi.org/10.1146/annurev.pp.23.060172.000333
Compton, M. E., Saunders, J. A., and Veilleux, R. E. (2018). Use of protoplasts for plant improvement. In "Plant tissue culture concepts and laboratory exercises", pp. 249-261. Routledge. https://doi.org/10.1201/9780203743133 DOI: https://doi.org/10.1201/9780203743133
Davey, M. R., Anthony, P., Power, J. B., and Lowe, K. C. (2005). Plant protoplasts: status and biotechnological perspectives. Biotechnology advances 23, 131-171. https://doi.org/10.1016/j.biotechadv.2004.09.008 DOI: https://doi.org/10.1016/j.biotechadv.2004.09.008
Eeckhaut, T., Lakshmanan, P. S., Deryckere, D., Van Bockstaele, E., and Van Huylenbroeck, J. (2013). Progress in plant protoplast research. Planta 238, 991-1003. https://doi.org/10.1007/s00425-013-1936-7 DOI: https://doi.org/10.1007/s00425-013-1936-7
Elkonin, L., Kibalnik, O., Zavalishina, A., Gerashchenkov, G., and Rozhnova, N. (2018). Genetic function of cytoplasm in plants with special emphasis on sorghum. Chloroplasts and Cytoplasm. Structure and Functions, Nova Science Publ., New-York, 97-154. https://doi.org/10.1002/9780470122532.ch1 DOI: https://doi.org/10.1002/9780470122532.ch1
Evans, D. A. (1983). Agricultural applications of plant protoplast fusion. Bio/technology 1, 253-261. https://doi.org/10.1038/nbt0583-253 DOI: https://doi.org/10.1038/nbt0583-253
Fisher, D. K., Boyer, C. D., and Guiltinan, M. (1994). 471 PB 361 GENETIC ENGINEERING OF STARCH USING CLONED STARCH BRANCHING ENZYME GENES. HortScience 29, 498f-498. doi:10.21273/hortsci.29.5.498f DOI: https://doi.org/10.21273/HORTSCI.29.5.498f
Galla, J. D. (1975). "A COMPARATIVE STUDY OF METHODS OF SOMATIC CELL FUSION," Florida Atlantic University. https://doi.org/10.1007/BF02879336 DOI: https://doi.org/10.1007/BF02879336
Gebhardt, C., and Valkonen, J. P. (2001). Organization of genes controlling disease resistance in the potato genome. Annual review of Phytopathology 39, 79-102. https://doi.org/10.1146/annurev.phyto.39.1.79 DOI: https://doi.org/10.1146/annurev.phyto.39.1.79
Glimelius, K., Fahlesson, J., Landgren, M., Sjödin, C., and Sundberg, E. (1991). Gene transfer via somatic hybridization in plants. Trends in biotechnology 9, 24-30. https://doi.org/10.1016/0167-7799(91)90008-6 DOI: https://doi.org/10.1016/0167-7799(91)90008-6
Grosser, J. W., Calovic, M., and Louzada, E. S. (2010). Protoplast fusion technology—somatic hybridization and cybridization. Plant Cell Culture, John Wiley & Sons, Ltd, 175-198. https://doi.org/10.1002/9780470686522 DOI: https://doi.org/10.1002/9780470686522.ch10
Grosser, J. W., and Gmitter, F. G. (2011). Protoplast fusion for production of tetraploids and triploids: applications for scion and rootstock breeding in citrus. Plant Cell, Tissue and Organ Culture (PCTOC) 104, 343-357. https://doi.org/10.1007/s11240-010-9823-4 DOI: https://doi.org/10.1007/s11240-010-9823-4
Guo, W.-W., Xiao, S.-X., and Deng, X.-X. (2013). Somatic cybrid production via protoplast fusion for citrus improvement. Scientia Horticulturae 163, 20-26. https://doi.org/10.1016/j.scienta.2013.07.018 DOI: https://doi.org/10.1016/j.scienta.2013.07.018
Gupta, G. (2004). "Plant Cell Biology," Discovery Publishing House.
Hafke, J. B., Furch, A. C., Reitz, M. U., and van Bel, A. J. (2007). Functional sieve element protoplasts. Plant physiology 145, 703-711. https://doi.org/10.1104/pp.107.105940 DOI: https://doi.org/10.1104/pp.107.105940
Harland, S. C. (1936). The genetical conception of the species. Biological Reviews 11, 83-112. https://doi.org/10.1111/j.1469-185X.1936.tb00498.x DOI: https://doi.org/10.1111/j.1469-185X.1936.tb00498.x
Hasnain, A., Naqvi, S. A. H., Ayesha, S. I., Khalid, F., Ellahi, M., Iqbal, S., Hassan, M. Z., Abbas, A., Adamski, R., and Markowska, D. (2022). Plants in vitro propagation with its applications in food, pharmaceuticals and cosmetic industries; current scenario and future approaches. Frontiers in plant science 13, 1009395. https://doi.org/10.3389/fpls.2022.1009395 DOI: https://doi.org/10.3389/fpls.2022.1009395
Hegarty, M. J., and Hiscock, S. J. (2008). Genomic clues to the evolutionary success of polyploid plants. Current biology 18, R435-R444. https://doi.org/10.1016/j.cub.2008.03.043 DOI: https://doi.org/10.1016/j.cub.2008.03.043
Hospet, R., Thangadurai, D., Cruz-Martins, N., Sangeetha, J., Anu Appaiah, K. A., Chowdhury, Z. Z., Bedi, N., Soytong, K., Al Tawaha, A. R. M., and Jabeen, S. (2023). Genome shuffling for phenotypic improvement of industrial strains through recursive protoplast fusion technology. Critical reviews in food science and nutrition 63, 2960-2969.https://doi.org/10.1080/10408398.2021.1983763 DOI: https://doi.org/10.1080/10408398.2021.1983763
Javed, M. M., Sami, A., Haider, M. Z., Abbas, A., Ali, M. H., Naeem, S., Amjad, M., Ahmad, A., and Bostani, R. (2024). THE CONTRIBUTION OF TRANSGENIC RICE TO ENHANCE GRAIN YIELD. Bulletin of Biological and Allied Sciences Research 2024, 65. https://doi.org/10.54112/bbasr.v2024i1.65 DOI: https://doi.org/10.54112/bbasr.v2024i1.65
Jovovic, Z., Andjelkovic, V., Przulj, N., and Mandic, D. (2020). Untapped genetic diversity of wild relatives for crop improvement. Rediscovery of genetic and genomic resources for future food security, 25-65. https://doi.org/10.1007/978-981-15-0156-2_2 DOI: https://doi.org/10.1007/978-981-15-0156-2_2
Junaid, M. D., and Gokce, A. F. (2024). GLOBAL AGRICULTURAL LOSSES AND THEIR CAUSES. Bulletin of Biological and Allied Sciences Research 2024, 66. https://doi.org/10.54112/bbasr.v2024i1.66 DOI: https://doi.org/10.54112/bbasr.v2024i1.66
Karp, A. (1995). Somaclonal variation as a tool for crop improvement. Euphytica 85, 295-302. https://doi.org/10.1007/978-94-011-0357-2_35 DOI: https://doi.org/10.1007/BF00023959
Kausch, A. P., Hague, J., Deresienski, A., Tilelli, M., and Nelson, K. (2012). Male sterility and hybrid plant systems for gene confinement. Plant gene containment, 85-100. https://doi.org/10.3389/fpls.2025.1540693 DOI: https://doi.org/10.1002/9781118352670.ch6
Lamb, T., Novak, J. M., and Mahoney, D. L. (1990). Morphological asymmetry and interspecific hybridization: a case study using hylid frogs. Journal of Evolutionary Biology 3, 295-309. https://doi.org/0.1111/j.1523-1739.2009.01400.x DOI: https://doi.org/10.1046/j.1420-9101.1990.3030295.x
Limera, C., Sabbadini, S., Sweet, J. B., and Mezzetti, B. (2017). New biotechnological tools for the genetic improvement of major woody fruit species. Frontiers in plant science 8, 1418. https://doi.org/10.3389/fpls.2017.01418 DOI: https://doi.org/10.3389/fpls.2017.01418
Lionetti, V., Cervone, F., and De Lorenzo, G. (2015). A lower content of de-methylesterified homogalacturonan improves enzymatic cell separation and isolation of mesophyll protoplasts in Arabidopsis. Phytochemistry 112, 188-194. https://doi.org/10.1016/j.phytochem.2014.07.025 DOI: https://doi.org/10.1016/j.phytochem.2014.07.025
Liu, J., and Deng, X. (2002). Regeneration and analysis of citrus interspecific mixoploid hybrid plants from asymmetric somatic hybridization. Euphytica 125, 13-20. https://doi.org/10.1023/A:1015748411654 DOI: https://doi.org/10.1023/A:1015748411654
Lorenz, M. G., and Wackernagel, W. (1994). Bacterial gene transfer by natural genetic transformation in the environment. Microbiological reviews 58, 563-602. https://doi.org/10.1128/mr.58.3.563-602.1994 DOI: https://doi.org/10.1128/mr.58.3.563-602.1994
Mathur, H., Joshi, N., and Pandya, I. Y. Plant Biology Techniques for Smart Agricultural Crop Production: Tradition to Advanced Technology–A Review. Plant Breeding 3, 13. https://doi.org/10.33451/florafauna.v28i1pp31-39 DOI: https://doi.org/10.33451/florafauna.v28i1pp31-39
McKey, D., Elias, M., Pujol, B., and Duputié, A. (2010). The evolutionary ecology of clonally propagated domesticated plants. New Phytologist 186, 318-332. https://doi.org/10.1111/j.1469-8137.2010.03210.x DOI: https://doi.org/10.1111/j.1469-8137.2010.03210.x
Mwangangi, I. M., Muli, J. K., and Neondo, J. O. (2019). Plant hybridization as an alternative technique in plant breeding improvement. https://doi.org/10.9734/ajrcs/2019/v4i130059 DOI: https://doi.org/10.9734/ajrcs/2019/v4i130059
Naeem, S., Sami, A., Haider, M. Z., Ali, M. H., Khaliq, A., Akram, M. I., Mudasar, M., Ali, Q., and Junaid, M. D. (2024). HEAT STRESS IN CITRUS: A MOLECULAR FUNCTIONAL AND BIOCHEMICAL PERCEPTION. Bulletin of Biological and Allied Sciences Research 2024, 69. https://doi.org/10.54112/bbasr.v2024i1.69 DOI: https://doi.org/10.54112/bbasr.v2024i1.69
Naik, B. P. K., and Gokul, A. CONSTRUCTION OF SOMATIC HYBRIDS AND PROTOPLAST CULTURE.
Olivares-Fuster, O., Durán-Vila, N., and Navarro, L. (2005). Electrochemical protoplast fusion in citrus. Plant cell reports 24, 112-119. https://doi.org/10.1007/s00299-005-0916-1 DOI: https://doi.org/10.1007/s00299-005-0916-1
Ollitrault, P., Guo, W., and Grosser, J. W. (2007). 10 Somatic Hybridization. Citrus genetics, breeding and biotechnology, 235. https://doi.org/10.1007/s00299-010-1000-z DOI: https://doi.org/10.1079/9780851990194.0235
Pandey, K. (1979). Overcoming incompatibility and promoting genetic recombination in flowering plants. New Zealand Journal of Botany 17, 645-663. https://doi.org/10.1007/BF00021648 DOI: https://doi.org/10.1080/0028825X.1979.10432576
Pasternak, T., Paponov, I. A., and Kondratenko, S. (2021). Optimizing protocols for Arabidopsis shoot and root protoplast cultivation. Plants 10, 375. https://doi.org/10.3390/plants10020375 DOI: https://doi.org/10.3390/plants10020375
Pental, D., and Cocking, E. C. (1985). Some theoretical and practical possibilities of plant genetic manipulation using protoplasts. Hereditas 103, 83-92. https://doi.org/10.1111/j.1601-5223.1985.tb00753.x DOI: https://doi.org/10.1111/j.1601-5223.1985.tb00753.x
Potrykus, I., and Shillito, R. D. (1986). Protoplasts: isolation, culture, plant regeneration. In "Methods in enzymology", Vol. 118, pp. 549-578. Elsevier. https://doi.org/10.3390/plants13223247 DOI: https://doi.org/10.1016/0076-6879(86)18101-8
Ranaware, A. S., Kunchge, N. S., Lele, S. S., and Ochatt, S. J. (2023). Protoplast technology and somatic hybridisation in the family Apiaceae. Plants 12, 1060. https://doi.org/10.3390/plants12051060 DOI: https://doi.org/10.3390/plants12051060
Rasheed, M. U., Malik, A., Tufail, M. T., Sami, A., Haider, M. Z., Ali, Q., Javed, M. A., and Ali, D. (2026). GENOME-WIDE CHARACTERIZATION AND EXPRESSION ANALYSIS OF THE BCCP GENE FAMILY IN SOYBEAN: IMPLICATIONS FOR FATTY ACID BIOSYNTHESIS UNDER SALT STRESS AND MELATONIN TREATMENT. Bulletin of Biological and Allied Sciences Research 2026, 110. https://doi.org/10.64013/bbasr.v2026i1.110 DOI: https://doi.org/10.64013/bbasr.v2026i1.110
Raza, A., Ayub, M., and Abbas, A. (2025). GENOME-WIDE IDENTIFICATION AND CHARACTERIZATION OF PBS3 PLANT-SPECIFIC TRANSCRIPTION FACTOR GENE FAMILY IN CARROT SPECIES (DAUCUS CAROTA L.). Journal of Physical, Biomedical and Biological Sciences 2025, 39. https://doi.org/10.64013/jpbab.v2025i1.39 DOI: https://doi.org/10.64013/jpbab.v2025i1.39
Rieseberg, L. H. (1997). Hybrid origins of plant species. Annual review of Ecology and Systematics 28, 359-389. https://doi.org/10.1146/annurev.ecolsys.28.1.359 DOI: https://doi.org/10.1146/annurev.ecolsys.28.1.359
Rosati, G. (2015). Design, characterization and validation of an innovative biosensor for illegal hypertrophy treatments detection in cattle breeding. https://doi.org/10.1149/MA2018-02/56/1988 DOI: https://doi.org/10.1149/MA2018-02/56/1988
Rose, R., Thomas, M., and Fitter, J. (1990). The transfer of cytoplasmic and nuclear genomes by somatic hybridisation. Functional Plant Biology 17, 303-321. https://doi.org/10.1007/BF00220954 DOI: https://doi.org/10.1071/PP9900303
Russell, S. D. (1993). The egg cell: Development and role in fertilization and early embryogenesis. The plant cell 5, 1349. https://doi.org/10.1105/tpc.5.10.1349 DOI: https://doi.org/10.2307/3869787
Saidi, M., and Warade, S. D. (2008). Tomato breeding for resistance to Tomato spotted wilt virus (TSWV): an overview of conventional and molecular approaches. Czech Journal of Genetics and Plant Breeding 44, 83-92. https://doi.org/10.17221/47/2008-CJGPB DOI: https://doi.org/10.17221/47/2008-CJGPB
Shepard, J. F., Bidney, D., Barsby, T., and Kemble, R. (1983). Genetic transfer in plants through interspecific protoplast fusion. Science 219, 683-688. https://doi.org/10.1126/science.219.4585.683 DOI: https://doi.org/10.1126/science.219.4585.683
Shuro, A. R. (2018). Review paper on the role of somatic hybridization in crop improvement. International Journal of Research 4, 1-8. https://doi.org/10.20431/2454-6224.0409001
Simmons, D. M., Arriza, J. L., and Swanson, L. (1989). A complete protocol for in situ hybridization of messenger RNAs in brain and other tissues with radio-labeled single-stranded RNA probes. Journal of histotechnology 12, 169-181. https://doi.org/10.1179/014788889794651870 DOI: https://doi.org/10.1179/his.1989.12.3.169
Tanksley, S., and Nelson, J. (1996). Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theoretical and Applied Genetics 92, 191-203. https://doi.org/10.1007/BF00223376 DOI: https://doi.org/10.1007/BF00223376
Tester, M., and Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science 327, 818-822. https://doi.org/10.1126/science.1183700 DOI: https://doi.org/10.1126/science.1183700
Thieme, R., and Rakosy-Tican, E. (2017). Somatic cell genetics and its application in potato breeding. The Potato Genome, 217-268. https://doi.org/10.1007/978-3-319-66135-3_13 DOI: https://doi.org/10.1007/978-3-319-66135-3_13
Tomar, U. K., and Dantu, P. K. (2010). Protoplast culture and somatic hybridization. Cellular and biochemical science. IK International House Pvt. Ltd., New Delhi, 876-891. https://doi.org/10.4236/ajps.2019.107086 https://doi.org/10.4236/ajps.2019.107086 DOI: https://doi.org/10.4236/ajps.2019.107086
Tomiczak, K., Adamus, A., Cegielska-Taras, T., Kiełkowska, A., Smyda-Dajmund, P., Sosnowska, K., and Szała, L. (2022). Tissue Culture Techniques for the Production of Interspecific Hybrids in Poland: History and Achievements. Acta Societatis Botanicorum Poloniae 91. https://doi.org/10.5586/asbp.9119 DOI: https://doi.org/10.5586/asbp.9119
Verma, N., Bansal, M., and Kumar, V. (2008). Protoplast fusion technology and its biotechnological applications. Chem Eng Trans 14, 113-120.
Wan, X., Wu, S., Li, Z., Dong, Z., An, X., Ma, B., Tian, Y., and Li, J. (2019). Maize genic male-sterility genes and their applications in hybrid breeding: progress and perspectives. Molecular Plant 12, 321-342. https://doi.org/10.1016/j.molp.2019.01.014 DOI: https://doi.org/10.1016/j.molp.2019.01.014
Wang, Z., Hopkins, A., and Mian, R. (2001). Forage and turf grass biotechnology. Critical Reviews in Plant Sciences 20, 573-619. https://doi.org/10.1080/20013591099281 DOI: https://doi.org/10.1080/20013591099281
Watts, A., Kumar, V., Raipuria, R. K., and Bhattacharya, R. (2018). In vivo haploid production in crop plants: methods and challenges. Plant Molecular Biology Reporter 36, 685-694. https://doi.org/10.1007/s11105-018-1132-9 DOI: https://doi.org/10.1007/s11105-018-1132-9
Yan, C.-Q., Qian, K.-X., Yan, Q.-S., Zhang, X.-Q., Xue, G.-P., Huangfu, W.-G., Wu, Y.-F., Zhao, Y.-Z., Xue, Z.-Y., and Huang, J. (2004). Use of asymmetric somatic hybridization for transfer of the bacterial blight resistance trait from Oryza meyeriana L. to O. sativa L. ssp. japonica. Plant cell reports 22, 569-575. https://doi.org/10.1007/s00299-003-0732-4 DOI: https://doi.org/10.1007/s00299-003-0732-4
Yang, Y. Y., and Kim, J. G. (2016). The optimal balance between sexual and asexual reproduction in variable environments: a systematic review. Journal of Ecology and Environment 40, 1-18. https://doi.org/10.1186/s41610-016-0013-0 DOI: https://doi.org/10.1186/s41610-016-0013-0
Zulkarnain, Z., Tapingkae, T., and Taji, A. (2015). Applications of in vitro techniques in plant breeding. Advances in plant breeding strategies: breeding, biotechnology and molecular tools, 293-328. https://doi.org/10.1007/978-3-319-22521-0_10 DOI: https://doi.org/10.1007/978-3-319-22521-0_10
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2026 FN AJMAL, M KHALIL, Q HAYYAT, SS ALI, MT TUFAIL, H AHMED, SHUH SHERAZI (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.