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Abstract The effect of genetics and environmental factors on wheat production and the necessity for researchers to 

find genetic sources that can survive changing environmental variables to maximize crop yield. According to previous 

studies, despite the genetic history of the cultivated variety, drought, high salt, heat, infections, and microbes affect 

wheat development and yield. Climate change can provide unexpected weather that harms crop output, threatening 

agricultural sustainability. Researchers are exploring genotyping, phonological traits, GWAS, and QTL mapping to 

boost crop output and fulfill population needs. Breeding and genetic modification are essential for wheat production 

due to a growing population, changing climate, and limited planted areas. The article also mentioned weighing 1000 

grains or kg per hectare to measure yield. 
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Introduction 

Triticum aestivum and Triticum durum are two types 

of wheat that are essential protein sources and calories 

for millions of people worldwide (Arzani & Ashraf, 

2017). It provides 18–20% of the world's calories and 

is a mainstay crop, making a big difference in 

ensuring enough food for everyone (Rampa et al., 

2020). The demand for wheat is likely to keep 

growing because the world's population and eating 

habits are constantly changing (Enghiad et al., 2017; 

Fróna et al., 2019). We currently grow more than 200 

million hectares of wheat, the most grains of any crop 

(Stewart & Lal, 2018). To keep up with the growing 

demand for food and ensure enough for everyone, it is 

important to create high-yield wheat types that can 

handle harsh conditions (Liliane & Charles, 2020; 

Zörb et al., 2018). Asseng et al. (2017) have found 

several factors that affect output, such as the number 

of spikelet’s per spike and the weight of 1000 kernels 

that help wheat grow well. So, to get the highest 

yields, breeding programs try to make wheat plants 

with these traits (Venske et al., 2019). However, 

global wheat yields have decreased since the 1990s, 

and climate change is still a threat. This means there 

is a need to quickly create wheat varieties that can 

handle abiotic stresses like drought, temperature 

changes, and soil salinization (Kumaraswamy & 

Shetty, 2016; Mariani & Ferrante, 2017; Sarwar et al., 

2021). 

To solve this problem, scientists have been looking 

into the different types of wheat and finding 

genotypes that can handle these stressful situations 

better and produce more crops (Beres, Hatfield, et al., 

2020; Beres, Rahmani, et al., 2020). Molecular 

markers that can speed up the creation of wheat types 

that can handle stress are also being looked for in 

these studies (Raza et al., 2019; Younis et al., 2020). 

Making high-yielding and stress-resistant wheat types 

is key to ensuring enough food for everyone 

worldwide. As the world's population and climate 

change, we need to quickly create new types of wheat 

that can thrive in these circumstances. The growth of 

new wheat types can meet the growing need for food 

by looking into the genetic diversity of wheat and 

using molecular markers in breeding programs (Ali et 

al., 2013; Alipour et al., 2017; Ghafoor et al., 2020; 

Wani et al., 2022).  

Different Techniques use for Crop Yield 

Improvement 

According to experts, improving factors like 

genotype, surroundings, and phonological traits could 

raise yields by 43-62%. These factors include how the 

leaves look, how they react to the length of the days 

for blooming, how much photosynthesis can happen 

through the flag leaf area, how well the plant can 

handle drought, and how well the roots can take water 

(Iqra et al., 2020; Muqadas et al., 2020; Takeno, 

2016). Many experts are working on different types of 

wheat to improve important traits like photosynthesis 

http://www.jpbab./
mailto:ali.bukhari91112@gmail.com


J. Physical Biomed. Biol. Sci. Volume, 2: 8                                                                                          Abbas et al., (2023)         

 

2 
 

and leaf gas exchange, as well as grain number and 

size. These optimized source and sink traits must 

work together well to increase food yields. Many 

characteristics, like the number of tillers per plant, the 

1000-kernel weight, the time of flowering, the days 

until heading, and the length of the spike, have been 

looked at to see how they affect output (Mathan et al., 

2016; Naseem et al., 2020; Nawaz et al., 2020). It is 

important to know that the number of spikes on a plant 

is linked to the number of tillers, affecting the grain 

yield of hexaploid wheat. Furthermore, breeding 

programs have shown that wheat types with higher 

grain weight have more chlorophyll pigment, 

affecting grain weight in direct and indirect ways. 

Multiple wheat genotypes had grain weights ranging 

from 20 to 50 g per 1000 kernels in one study (Ali, 

2017; Sarwar et al., 2022; Shafique et al., 2020). This 

was due to grain filling and cell growth through water 

absorption. Genotypes with better root growth, 

biomass, and water uptake have higher grain weight 

and better grain filling. Scientists have also looked at 

other factors that affect 1000-kernel weight, such as 

the weight of the carpel at anthesis, the date of 

anthesis for each flower, and the length of time the 

grains are filled (Wu et al., 2018). 

Genotype Effects on Wheat Yield 

Wheat is a significant food item worldwide, a 

hexaploid plant with the genetic code 2n=6x=42 and 

a primarily studied family name (Poaceae). The plant 

is polyploid, which means it has three different 

genomes, each with two sets of basic chromosomes 

(2n=2x=14). This species has three genomes: the A 

genome comes from Triticum urartu, the B genome 

comes from Aegilops speltoides, and the D genome 

comes from A. Tauschii. This complicates and is 

genetically varied (Mirzaghaderi & Mason, 2019). 

Different types of wheat have different genetic 

variations that affect their yield. Plant height, the 

number of tillers and spikelet’s, grain weight, and 

other factors affect wheat's total productivity (Ali et 

al., 2016). Li et al. (2016) found that the number of 

spikelets per spike varies between kinds of wheat. The 

number of tillers per plant can also affect the number 

of spikelet’s and the weight of the grain. Earlier 

research has shown that several farming and 

physiological traits are genetically variable. These 

include plant height, tiller and kernel number, days to 

maturity, and blooming (Voss-Fels et al., 2019). 

Genetic prediction works better for smaller groups of 

people than QTL-based prediction (Norman et al., 

2017). Genetic and morphological studies of wheat 

spike and kernel traits have shown geographical 

patterns and long-term trends. These studies are 

mostly about spikelet fertility and kernel/spikelet 

number, determining the final grain yield. Genome 

prediction has shown that these qualities are passed 

down quantitatively and are affected by small-effect 

QTLs (Moore et al., 2017). 

Yield Improvement using GWAS and QTL 

Mapping 

It was hopeful at first that linkage mapping and 

GWAS would significantly improve grain yield 

because of how complicated yield is, both genetically 

and in terms of how it interacts with biotic and abiotic 

factors in the field. But, despite attempts, this hasn't 

happened. QTL mapping is a powerful tool for finding 

specific genome regions and learning about the 

physiological and genetic processes that control 

important characteristics (Bhanu et al., 2016). This 

method works well for quality traits that don't depend 

on many genes. Additionally, Marker-Assisted 

Selection using closely related markers or the causing 

mutation can help choose phenotypes more 

effectively (Visscher et al., 2021). However, it has 

been hard to find important QTLs and useful markers 

for yield. Some studies found that the allele from one 

parent increased grain output, while others found that 

the allele from the other parent did a better job. We 

don't fully understand the natural factors that cause 

this variation yet. Some things that could change are 

the number of seeds planted, how they are watered, 

and the stress caused by heat and drought. It's hard to 

find yield QTLs and useful selection markers, as this 

shows (Platten et al., 2019; Yang et al., 2020).  

Focusing on key sites within physiological systems 

instead of individual QTLs is better than keeping 

yields stable across various environmental factors 

(Dwivedi et al., 2020). In places with many terminal 

droughts, for example, wheat and barley plants may 

do better if their roots are small to reach deep water in 

the ground (Daryanto et al., 2017). On the other hand, 

breeding rice to be more resistant to drought and 

better at establishing itself in flooded fields could 

mean making rice plants more resistant to senescence 

and anaerobic germination (Kumar et al., 2017). 

These particular traits are more important in specific 

settings than in terms of progress as a whole. Many 

links have been found between adaptive traits and 

field yield (Furbank et al., 2019). So, we must look at 

the whole picture to determine how genetics affects 

yield-related traits. This means using methods that 

combine genetics, physiology, and metabolism to 

figure out how things work (Sallam et al., 2019). Field 

testing in natural farming conditions is significant, 

and using a mix of methods like linkage mapping and 

GWAS has been shown to work best. It's now easier 

to do this with the help of freely available datasets and 

tools (Shadrin et al., 2021). For advanced methods 

like GWAS and forward and reverse genetic 

approaches (Kondić-Špika et al., 2023; Walli et al., 

2022), high-throughput phenotyping is necessary. 

Influence of Biotic and Abiotic Stress Factors on 

Wheat Yield 

Healthy Environment Soil Salinization 

Management 

Abiotic stress affecting field crops is mainly caused 

by salt, with drought being the other major. Indicators 

like  Shankar and Prasad (2023) say this stress can 

significantly lower food yield, growth, and 

production. The physical and chemical qualities of the 
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soil, as well as the ecosystem's balance, are also 

greatly affected. Soil erosion, low food yields, and 

lower economic returns are some problems that can 

happen because of salinity stress (El Sabagh et al., 

2020). 

Plants' anatomy, physiology, and biochemistry are all 

damaged by salinity stress, which makes it harder for 

seeds to sprout, grow, and take in water and nutrients 

(Shahid et al., 2020). Ion poisoning, a lack of 

important elements like N, Ca, K, P, Fe, and Zn, 

osmotic stress, and less water intake are all caused by 

it. Beyond that, plants can also be hurt by too much 

sodium, chlorine, and boron (Chakraborty et al., 

2018). Photosynthesis is directly affected as the leaf 

area, chlorophyll content, and stomatal opening all 

drop (Chakraborty et al., 2018; Hu et al., 2020). 

According to Bhattacharjya et al. (2018), salinity 

stress can also affect reproductive development. It can 

stop micro-sporogenesis and stamen filament 

lengthening, cause more tissue cell death, lead to 

ovule abortion, and slow embryo development. Plants' 

growth and output are greatly affected by salinity 

stress. In the worst cases, plants can die, and resources 

are lost. Two ways plants deal with salinity are by 

either getting rid of too many salts in their cells or 

being okay with them being there (Acosta-Motos et 

al., 2017; Dassanayake & Larkin, 2017). Varying 

amounts of salt can hurt different foods. Wheat (T. 

aestivum), a grain that can handle salt, does best in 

mild climates, while rice (Oryza sativa L.), on the 

other hand, is susceptible to salt and can't grow in 

salty places (Hasan et al., 2022). Salt-tolerant crops 

like barley (Hordeum vulgare) can still die in high salt 

levels, but durum wheat is not as salt-tolerant as bread 

wheat (Mwando, 2021). Biochemical, physiological, 

and molecular levels all show that salt stress hurts 

plant growth and development as a whole (Dogan, 

2020; Isayenkov & Maathuis, 2019). 

Effect of Drought Stress 

The main reason for drought in agriculture is 

insufficient water in the root zone, resulting in less 

production. Drought has many effects that are 

different in different places. To be able to survive 

drought, plants need adaptation, which includes the 

ability to avoid drought and the ability to handle being 

dry. However; this tolerance differs from salt 

tolerance (Abobatta, 2020; Asif et al., 2020; Ghafoor 

et al., 2020; Ilyas et al., 2021; Zubair et al., 2016). 

Controlling how much the plant absorbs and moves 

the salt is very important for salt tolerance. Depending 

on the climate, drought can have different effects on 

crop production. For example, traits or genes that 

increase yield in severe drought may not work in 

moderate drought or may even have adverse effects 

when there is enough water. For this reason, we need 

to improve plants' ability to handle drought in certain 

areas. Plants have many ways to fight off drought, 

such as controlling the behavior of their stomata, the 

balance of osmotic pressure, the activity of 

antioxidants, hormone signaling, miRNA expression, 

light protection, and metabolic pathways (dos Santos 

et al., 2022; Kaur et al., 2021). Dry conditions change 

gene expression and metabolite output, meaning 

many genes and pathways are involved in this 

regulatory network. Photosynthesis is crucial during 

the blooming phase because it creates a good sink 

potential for later higher output (Ahmad et al., 2021; 

Ali et al., 2016; Soltani et al., 2019). Many things 

affect grains, including carbon and nitrogen 

availability, 10 to 15 days before anthesis. As weather 

conditions worsen, a lack of water from insufficient 

rain and groundwater loss are major threats to crop 

production and food security. To feed everyone, crop 

production needs to improve, even if there isn't a lot 

of water available (McAfee, 2019). Because of 

climate change, droughts, and storms will happen 

more often, making it even harder to grow food. 

Effect of temperature 

Stress from heat harms wheat yield. Asseng et al. 

(2015) say that average world wheat yields will drop 

by 4 to 6 percent for every 1°C rise in global mean 

temperature (Zhao et al., 2017). Heat can affect 

growth and grain filling depending on when and how 

strong the stress is (Sehgal et al., 2018). Heat stress 

can make flag leaf photosynthesis less effective, 

which makes it harder for assimilates to build up and 

move around. This can lead to a significant drop in 

grain yield and quality (Feller, 2016). 

Effect of Phyto-pathogens 

The agricultural sector faces many problems as the 

world's population grows quickly. Plant diseases can 

hurt crop output, leading to lower yields, especially 

for crops used for biofuel and fiber. This can be very 

bad or long-lasting (Antar et al., 2021). For example, 

the top six food crops lose an average of 45% of their 

production. Postharvest disease can also be very bad, 

especially when it's hard to get to markets, the 

infrastructure isn't good, and the supply chain isn't 

working well. Some of these diseases can also make 

poisons that harm people's health. Experts think that 

changes in the climate, like global warming, can make 

plant germs spread faster and cause more damage 

(Bhadra et al., 2022). According to Petronaitis et al. 

(2021), these pathogens cause crop losses of 20 to 30 

percent annually. This costs a lot of money and affects 

food security locally, nationally, and internationally. 

The direct effect of Phytopathogens on grain yields is 

responsible for 25–45% of all farm production 

worldwide (Petronaitis et al., 2021). 

Effect of Photosynthesis 

Photosynthesis has become more and more popular as 

a way to improve crop yield over the years. 

Photosynthetic models have helped researchers learn 

about different parts of photosynthetic leaf gas 

exchange. Some of these studies are by (Wu et al., 

2019)created a diurnal canopy photosynthesis 

stomatal conductance model that shows how leaf 

photosynthesis affects crop output in an Australian 

cropping region in the spring and summer, when 
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water is limited and when water is not limited (Wu et 

al., 2019). 

Conclusion 

The last few decades have seen a lot of progress in our 

knowledge of the genes and processes that control 

important traits that increase crop yield, like the 

amount and size of grains, the number and function of 

stomata, the structure of leaves, and the storage of 

carbohydrates. However, regarding grain output and 

wheat quality, how genotypes and environmental 

conditions interact often leaves people guessing what 

will happen. This is a big problem for systems that 

look at inbreeding and genotypes. Soil quality, 

nitrogen supply, rainfall, and temperatures during 

ripening are critical factors that affect how well 

different genotypes do. To make a single gene change 

in wheat work, you need to simultaneously target all 

three copies of the gene using methods like gene 

recognition and editing. GWAS and QTL mapping are 

both thorough ways to increase crop yields, but they 

haven't significantly impacted total crop productivity 

yet. Gene editing has a lot of promise, especially 

regarding decreasing negative yield regulators. 

Researchers can speed up the creation of drought- and 

stress-resistant crop types by finding and using new 

molecular markers. It's important to balance 

vegetative and root growth for significant output gains 

and make the most of the carbon allocation processes 

during grain set and filling. To do this, you need to 

know how genes and systems work together in the 

field. Basic study is still ongoing, and gene editing 

could be helpful. This gives us reason to be hopeful 

about getting significant yield gains in the future. 
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