
Journal of Physical, Biomedical and Biological Sciences 
eISSN: 3005-6489 

www.jpbab.com 

J. Phys. Biomed. Biol. Sci., 2025; Volume, 4: 43 

1 

 

 

Review Article                                                                                                          Open Access        

BIOCHEMICAL, PHYSIOLOGICAL AND MOLECULAR RESPONSES OF THE HORTICULTURAL 

CROPS TO COLD RESPONSES 

TAHIR A1*, ASHRAF M2, SHABIR F1 

1Department of Entomology, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, 

Lahore, Pakistan 
2Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, 

P.O BOX. 54590, Lahore, Pakistan 

*Correspondence Author Email Address:  ayeshatahir2070@gmail.com     

(Received, 1st February 2023, Accepted 10th March 2025, Published 25th March 2025) 

Abstract A variety of abiotic stresses can affect horticultural crops, with low temperature being the most critical state. 

The environment has a tremendous impact on the productivity or quality of these crops. The quality and durability of 

horticultural crops are negatively impacted by cold stress, which includes freezing temperatures (less than 0°C) and 

chilling temperatures (0–15°C). Additionally, it disrupts the plants' philological and biological processes, resulting 

in symptoms such as stem elongation inhibition, wilting, fruit drop, chlorosis, and inhibition of cell division. The 

vegetative and reproductive growth of horticultural crops, such as papaya, banana, and coffee plants is similarly 

impacted by low temperature (LT). Cold stress also significantly affects cellular alterations, and disturbances in 

chlorophyll, photosynthesis, or cell membranes. Ca2+ and K+ ions serve as vital for controlling stress responses. This 

review emphasizes methods for improving cold stress and maintaining yield quality through optimal temperature 

control, while also highlighting the biochemical, molecular, and physiological responses of horticulture crops to cold 

stress. 

Keywords: Cold acclimation; physiological changes; Stress signaling pathways; optimum temperature; Biochemical 

changes; Molecular response; Membrane injury

Introduction 

The productivity and quality of horticultural crops are 

significantly impacted by cold stress, a common 

abiotic factor. Some surfaces of the earth are covered 

with ice, while various regions have temperatures that 

make it difficult for plants to grow and survive 

(Ramankutty et al., 2008). In these conditions, plants 

need certain defenses to survive at low temperatures 

(LT). Chilling stress (0–15 °C) and freezing stress (<0 

°C) are two types of cold stress (Thomashow, 1999). 

Low temperature have one of two effects on plants: 1. 

Chilling stress, which happens when plants suffer 

damage without ice crystals forming inside their cells 

after being exposed to LT below 10-15°C for an 

extended length of time 2. Plants that experience 

freezing stress, which results in cell dryness and 

freezing damage, are subjected to temperatures lower 

than 0 degrees Celsius(Beck et al., 2007; Zhu et al., 

2007). Cold stress is a very quantitative characteristic 

for altered metabolic pathways, cell compartments, 

and regulations of gene or plant growth (Hannah et al., 

2005). To increase plant output and guarantee food 

security, it's critical to understand how various 

horticultural crops respond to cold stress. Cold stress 

can also stop the many processes within the crop.  

Flowers or leaves may suffer from chilling harm and 

cold stress. Cold stress affects growth, yield, and 

production. Low, High temperature or quality has a 

strong correlation with photosynthesis and respiration 

(Ferrante and Mariani, 2018; Kasuga et al., 1999; 

Mariani and Ferrante, 2017). Temperature is a big 

influence directly on plant growth. Every horticulture 

crop has its optimum temperature. Plant growth is 

directly related to their Optimum temperature 

(Malhotra, 2017). Some winter crops require 

exposure to low temperatures (3-7°C) for the 

initiation of flowering. This response is known as 

Vernalization. In Low temperatures physiological and 

biochemical processes stop and Molecular 

mechanisms also affect. Cold temperature is favorable 

for some plants but not for all. LTS-related 

biochemical, molecular, and physiological 

mechanisms in horticultural crops (Hasanuzzaman et 

al., 2013). Plant growth and development are 

influenced by LT, which alters physiological, 

biochemical, and molecular processes (Miura and 

Furumoto, 2013; Nishiyama, 1976). Horticultural 

crops need more attention. The development, 

reproduction, growth, or eventual yield of the plant 

are all impacted by any change in environmental 

conditions or abiotic elements like temperature. The 

major technique utilized to preserve the quality of 
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harvested horticulture crops is temperature control. 

Abiotic stresses affect multiple processes in plants 

(Francini and Sebastiani, 2019). Low temperature 

stress (LTS) negatively impacts horticultural plants’ 

reproductive and vegetative development, resulting in 

lower yields and worse-quality products (Goswami et 

al., 2022). 

 Extreme waterlogging is a result of meteorological 

changes including drought, cold waves, and excessive 

rainfall, among other things. Given climate change 

and global warming, it may seem paradoxical to think 

that the greenhouse effect may be to blame for cold 

waves. Strong rains after periods of extreme drought 

or seasonal changes that lead to a thermal imbalance, 

For example, winters with average temperatures 1-

2°C higher than historical records, followed by 

periods of extremely low temperatures are examples 

of seasonal variations that have an impact on water 

regimes (Cohen et al., 2013; Kodra et al., 2011; 

Rosenzweig et al., 2001; Trouet et al., 2018). 

Table 1. Overview of an ideal temperature range for horticultural species’ vegetative and reproductive 

development in given  

Horticultural 

crops  

Scientific Names  Optimum 

temperature (°C) 

Reference (s) 

Grapevine Vitis vinifera 10-35°C  (White et al., 2006) 

Banana  Musa spp 20-30°C (Ahmad et al., 2001) 

Guava  Psidium guajava 23-28°C (Haryanto et al., 2021) 

Mango  Mangifera indica  24-27°C (Mukherjee and Litz, 2009) 

Pomelo Citrus maxima L. 23-30°C (Huang et al., 2021) 

Rambutan  Nephelium lappaceum 25-35°C (Vargas-Hernandez et al., 2017) 

Jackfruit Artocarpus heterophyllus 16-28°C (Haq, 2006) 

Coconut Cocos nucifera 31-43°C (Mauro and Garcia, 2019) 

Citrus  Citrus spp 25-30°C (Abobatta, 2019) 

Mangosteen  Garcinia 25-35°C (Osman and Milan, 2006) 

Cold stress effect on Horticultural crop  

Physiological responses 

Chilling damage is a physiological condition that 

causes aberrant ripening, pitting, or browning, which 

has a detrimental impact on horticulture goods and 

shelf life (Chen et al., 2008). LT stress significantly 

affects the reproductive or vegetative growth of 

horticulture crops (Alonso et al., 1997). Horticultural 

crops (vegetables and fruits) contain appreciable 

amounts of nutrients including minerals, 

carbohydrates, dietary fiber, vitamins, antioxidants, 

and some other components that are present that are 

essential for human health (Bellavia et al., 2013). 

Crops in the horticultural industry suffer severe 

damage from frost or unforeseen temperature changes 

throughout the winter. Fruit that has a meager yield. 

Furthermore, papaya blooms may become female 

under cold, humid circumstances, leading to 

malformed fruits (Awada, 1958; Lin et al., 2016; 

Storey, 1969). Due to improperly low temperatures, 

papayas can cause burning skin and water-soaked 

meat (Zou et al., 2014). Banana fruits suffer chilling 

harm at temperatures below 13°C, showing pitting on 

the peel surface, irregular ripening, and scent loss 

(Guo et al., 2018). Low temperatures in coffee plants 

hinder vegetative growth, reduce photosynthesis, and 

result in regulatory maturity or subpar yield (Bauer et 

al., 1985). Because of the reduced photosynthetic rate 

caused by the low temperature, plant growth 

decreased (Criddle et al., 1988). Reduced root 

elongation and cortical damage are caused by LT 

(Harrington and Kihara, 1960). LT has a detrimental 

effect on the horticultural goods’ quality, reducing 

their potential for economic success. Problems with 

the reproductive organs' structure and function are 

brought on by cold stress. Low temperature (LT) can 

prevent fertilization or cause seeds or fruit to ripen too 

early (Farooq et al., 2009).  

Cellular Change 

 The plant’s cell membrane serves as the main 

location of the freezing damage (Levitt, 1980; 

Steponkus, 1984). 

Acute dehydration is caused by chilling in the 

membrane. The chilling stress reduces the 

photosynthesis efficiency of sensitive plants. 

According to several studies, the principal locations 

of freezing damage in plants are cell membrane 

networks (Levitt, 1980; Steponkus, 1984), or freeze-

induced membrane is a significant factor in plant 

injury. Plant injury is mostly brought on by severe 

dehydration that cold causes (Steponkus, 1984, 1993). 

Since the extracellular fluids of the apoplectic region 

have a larger freezing point and a lower solute 

concentration than the intracellular fluid, ice 

production first begins in these fluids (Jan and 

Andrabi, 2009). 

Because ice has a lower water potential than liquid, 

extracellular ice has a lower water potential than 

inside the cell, which results in dehydration. Changes 

in the composition of membrane liquid, anomalies in 

cellular function, electrolyte leakage, and membrane 

damage are indicators of low-temperature stress 

injury (Mahajan and Tuteja, 2005; Shin et al., 2018; 

Yadav, 2010).  
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Studies have found that some sensitive plants’ 

photosynthetic performance is decreased by cold 

stress (Fariduddin et al., 2011; Yang et al., 2005). 

Under LTS, carbon reduction cycle or thylakoid ETS 

route barriers drastically altered photosynthesis. 

Reduced photosynthetic rate is caused by stomatal 

regulation of CO2 supply (Allen and Ort, 2001). 

Limitations in stomatal conductance caused by the 

death of guard cells as a result of the cold have an 

impact on dehydration. The protracted chilling time 

has altered the chloroplast’s ultrastructure (Yang et 

al., 2005). There are two essential nutrients Potassium 

and Calcium to improve plant chilling tolerance. 

Numerous studies have shown that plasma membrane 

cation conductance, which is predominantly 

responsible for K+ efflux from plant cells, is the main 

cause of electrolyte leakage. Low K+ levels cause 

damage from photo-oxidation brought on by freezing 

or frost is exacerbated. Plant growth and yield are 

reduced Applying K+ in higher concentrations 

reduces the LTS injury in the crops for example 

potatoes as a result. High potassium concentrations 

inside the cells protect them alongside oxidative 

damage brought on by freezing or frost (Waraich et 

al., 2012). The use of K+ with a higher concentration 

may reduce LTS damage to crops like potatoes 

(Grewal and Singh, 1980). Vegetable seedlings and 

carnations, respectively (Hakerlerler et al., 1997; 

Kafkafi, 1990). A high K+ content was also observed, 

and stomatal conductance and transpiration rate were 

both decreased (Pradhan et al., 2017). Ca also controls 

how the body reacts to stress during the healing 

process after a cold injury and while adjusting to cold 

stress (Palta, 1990). Intercellular vacuoles, which are 

the source of Ca2+, cause stomatal closure when the 

amount of Ca2+ inside the cell rises. Stomata are 

closed under the influence of Ca2+ (Wilkinson et al., 

2001). For LTS to recover, Ca2+ is required. Through 

the activation of the plasma membrane enzyme 

ATPase, it revitalizes damaged cells(Palta, 1990). 

Calcium also functions as Camodulin, which controls 

metabolic activity and aids in growth of the plants 

(Waraich et al., 2012). 

Chlorophyll 

Chlorophyll is the key element of the photosystem. In 

leaves that are actively developing, LTS suppresses 

chlorophyll (Glaszmann et al., 1990). Compared to 

cold-sensitive lines, cold-tolerant genotypes may 

deposit more chlorophyll under LTS (Pradhan et al., 

2019). An alternate method to gauge the freezing 

chlorophyll fluorescence measures a leaf’s ability to 

tolerate freezing damage and adapt to cold (Ehlert and 

Hincha, 2008). To determine the degree of 

photodamage at low temperatures in different crops 

such as Arabidopsis (Ehlert and Hincha, 2008). 

Soybean (Tambussi et al., 2004), and maize (Aroca et 

al., 2001). The use of the chlorophyll fluorescence 

method Chlorophyll fluorescence, according to 

(Maxwell and Johnson, 2000), indicates PS II 

reactions brought on by LTS. According to (Smillie, 

1979), papaya’s quantum efficiency varied between 

0.42 in the winter and 0.72 in the summer, showing 

that LT decreased PS II activity. Fluorescence in 

strawberries also reflects changes to the 

photosynthetic apparatus, and LTS decreased the 

value of chlorophyll fluorescence (Zareei et al., 2021). 

Fv/Fm decrease during LTS also discovered by 

(Pradhan et al., 2019). 

Photosynthesis 

At low temperatures, the metabolic process slows 

down and sometimes pauses under a lot of pressure 

(Araújo et al., 2013). LT affects the photosynthesis 

process in fruit crops. All major components are 

reduced due to disruption under LTS, which also 

includes the carbon reduction cycle and thylakoid 

electron transport mechanism. Long-term cooling 

reduces the chloroplast’s ultrastructure and thylakoid 

membrane’s ability to capture light (Yang et al., 

2005). Due to LT, the electron transport chain is too 

reduced, which results in an Imbalance in the 

photosynthetic action in the thylakoid membrane 

(Ruelland et al., 2009; Soitamo et al., 2008; Yun et al., 

2010). When compared to control plants, plants of 

papaya subjected to a Low-Temperature regime of 

20/10°C (day/night) showed a 57.96% decline in 

photosynthesis. Their level of tolerance was 

genotype-dependent decreasing. When compared to 

other genotypes, chilling-sensitive red lady papaya 

had a dramatic decline (Satyabrata et al., 2018). When 

compared to the control (15/5°C; day/night; 4 days) 

plants of papaya exposed to LT regime had a 15% 

lower rate of photosynthesis according to (Grau and 

Halloy, 1997).  

 Due to lower stomatal conductance LTS also reduces 

leaf gas exchange in fruit crops which results in the 

production of ROS. The genotype resistant to LTS can 

maintain high leaf water potential (Wilkinson et al., 

2001). 

Biochemical Responses 

The organic percentage of the waste stream’s 

cellulosic component is broken down as part of the 

biochemical process. This might contain certain food 

items (fruits and vegetables), paper goods, and 

landscaping plants. Low-temperature stress altered 

the biochemistry of several cellular components and 

processes. Modifications in membrane lipid content 

brought on by LTS (Janská et al., 2010). The crop 

plants may be harmed by the chemical and physical 

stressors (Mehdizadeh and Mushtaq, 2020). However, 

to maintain an eco-friendly environment with desired 

horticultural yield, rigorous management is necessary 

(Calabrese, 2014; Vargas-Hernandez et al., 2017). 

Cell membrane 

The main event in cold stress is membrane damage. 

The cell is shielded from harm by the cell membrane. 

It offers a stable environment for intercellular 
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biological activity. The metabolic processes are 

impacted once the membranes break down as a result 

of cold stress, which results in ion linkage, inadequate 

energy, and an excess of reactive oxygen species 

(ROS). Cell death and membrane rupturing are the 

outcomes (Patel et al., 2016). Ultrastructure study 

revealed that low temperatures harmed the 

membrane’s integrity and function,  cell death, or 

surface pitting (Wang et al., 2019). In their physical 

condition at low temperatures, the membrane lipid 

composition manifests itself in many ways, and the 

high concentration of unsaturated fatty acids is 

advantageous for supporting membrane function as it 

should be (Mendoza, 2014). Cold stress causes cell 

membrane damage or affects it, changing the plasma 

membrane’s makeup. Increase the quantity of 

unsaturated fatty acids in the plasma membrane to 

lessen LTS damage (Theocharis et al., 2012). These 

adjustments guard against LTS damage to chloroplast 

envelopes and the plasma membrane (Matteucci et al., 

2011). Under LTS, the chloroplast membrane has a 

greater concentration of saturated fatty acids [Yokoi 

et al., 1998]. When lipid peroxidation agents are 

added in LTS, The phospholipid bilayer of the cell 

membrane's lipid order is disrupted, and holes start to 

appear. Proteins and DNA can be oxidatively 

damaged by reactive substances. Examples include 

reactive oxygen or nitrogen species (Alonso et al., 

1997; Van der Paal et al., 2016). 

LTS related proteins 

Lipoproteins are among the several metabolites and 

metabolic processes that LTS impacts (Miura and 

Furumoto, 2013). Plant cells synthesize the necessary 

proteins under the LTS to preserve the security or 

integrity of plasma membranes, chloroplastic 

envelop, and other cellular membranes. There are four 

protein families: LTI (cold-regulated proteins), RAB 

(responsive to abscisic acid), LEA (late 

embryogenesis abundant), and HSPs (heat-shocked 

proteins). The most common LEA protein, dehydrins, 

maintains cell membrane stability when exposed to 

cold stress (Bies-Etheve et al., 2008; Sun et al., 2013). 

After cold accumulation in guava, (Hao et al., 2009) 

conducted studies of leaf proteins. It has also been 

found that plants under cold stress denaturate their 

proteins (Guy and Niemi). After some time, Pardhan 

discovered that papaya leaves that had undergone cold 

treatment had 35.51% more total protein (Pradhan et 

al., 2017). 

Signaling and Molecular responses 

Phytohormones 

 During abiotic stressors such as drought, cold, salt, 

light, and heavy metal stresses, abscisic acid, 

ethylene, jasmonic acid, and salicylic acid (SA) are 

essential because they serve as connections between 

the stress regulator and the reactions of cells, tissues, 

and organs to outside stimuli(Rachappanavar et al., 

2022). 

Molecular responses 

Environmental stressors such as salinity and excesses 

in temperature are the primary causes of floral losses. 

It is a widespread issue that has a major effect on plant 

development, reduces crop quality, or even affects 

crop distribution across geographical areas. Through 

molecular networks, plants adapt to their 

surroundings (Wang et al., 2014). LT leads to 

biochemical changes and physiological in the plant 

cells e.g. membrane rigidification, decreased enzyme 

kinetic, metabolic instability, etc. Different plant 

species respond differently to cold stress and as a 

result, the metabolism of those plants is altered by 

redirecting the expression of various stress 

(Chinnusamy et al., 2010; Guo et al., 2018). Plant 

starts the chain of processes that lead to the expression 

of genes (Zuther et al., 2019) which in turn promotes 

biochemical and physical changes that increase their 

tolerance to subfreezing conditions Plants change the 

composition of the cell membrane, the translational 

state of the protein and ROS system as a part of their 

adaptive response to cold stress. Gene expression is 

necessary for these systems. Tropical and subtropical 

crops are vulnerable to cold stress, but temperature 

crops can adapt to it (Chinnusamy et al., 2010). 

Conclusion 

LTS affects nearly every aspect of cellular function as 

well as the quality of crop yield. LTS unfavorable 

affects the entire development and growth of the 

horticulture crops. However Researchers have 

thoroughly tested the understanding of low-

temperature harm on several field crops. The 

physiological, molecular, and biochemical processes 

behind Low-temperature stress tolerance and 

resistance in fruit crops under open and simulated LT 

conditions require more study. This aids in genetic 

advancement and cultural practice standardization for 

the productive development of horticulture crops.  
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