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Abstract This study was designed to evaluate some wheat varieties against the most prevailing and increasing drought 

conditions worldwide and recommend suitable drought-resistant varieties to the farmer communities so that the yield 

can be increased even in stressful conditions to meet the increasing demand for food. For this purpose, seven wheat 

genotypes were grown in the sandy loam soils at the experimental research area of the College of Agriculture, BZU 

Bahadur sub-campus Layyah, during the wheat season of 2020-2021. Data were collected for plant height, number 

of tillers per plant, number of spikelets per spike, spike length of mother tiller, thousand grain weight, number of flag 

leaf sizes and grain yield per plant. In breeding for drought tolerance, grain yield is the idea for selection; however, 

it's a complicated, late-degree trait tormented by many elements other than drought. An approach that evaluates 

genotypes for physiological responses to drought at advanced increase ranges can be extra centered to drought and 

time efficient. Such a method can be enabled through current advances in excessive-throughput phenotyping 

platforms. In addition, the fulfilment of the latest genomic and molecular techniques depends on the best of phenotypic 

facts applied to dissect the genetics of complicated developments, including drought tolerance. Therefore, the primary 

goal of this assessment is to explain the increase-degree primarily based physio-morphological developments that 

would be centered through breeders to increase drought-tolerant wheat genotypes. The 2nd goal is to explain current 

advances in excessive throughput phenotyping of drought tolerance associated physio-morphological developments 

in the main below discipline conditions. We talk about how those techniques may be included in a complete breeding 

application to mitigate the influences of weather change. The assessment concludes that there may be a need for 

excessive throughput phenotyping of physio-morphological developments; this is increased degree-primarily basedto 

enhance the performance of breeding drought-tolerant wheat. 
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Introduction 

Wheat, scientifically known as Triticum aestivum L., 

is the foremost cereal crop globally, a staple food for 

most of the world's population (Abhinandan, 2018). 

Forecasts indicate a 60% surge in wheat consumption 

by 2050 to meet the needs of an anticipated population 

of nine billion. This necessitates a remarkable 

increase in annual global average wheat yields by at 

least 1.6 percent, a leap from the current 1 percent, as 

suggested by OECD in 2018. Across history, over 

2,000 plant species, including cereals, legumes, fruits, 

and herbs, have been cultivated, yet only a few, 

notably wheat, have significantly influenced and 

intertwined with human existence (Ahmed et al., 

2020). The domestication of wheat reshaped 

civilizations, enabling settled living, fostering 

scientific advancements, accelerating the 

development of communities, and forming kingdoms, 

empires, and modern nations (GhahremaniNejad and 

Hoseini, 2015). Wheat is significant in human 

nutrition, contributing to 20 to 28 percent of an 

individual's dietary energy (Ghahremaninejad et al., 

2021). It serves as a crucial global source of nutrition, 

supporting approximately 4.5 billion people. With 

fast-paced climate change and heightened global food 

demands, there's an urgent need for wheat breeding 

that prioritizes superior quality, higher yield potential, 

and resilience to both abiotic and biotic stressors 

(Tubeillo et al., 2016). Pakistan, a crucial center for 

wheat production with a wealth of wheat germplasm, 

has seen substantial growth in wheat production 

(Sallam et al., 2019). Despite being ranked second in 

overall productivity, the country leads in cultivable 

land, per FAO's 2021 data. However, various factors, 

primarily drought, significantly affect wheat 

productivity (Wang et al., 2020). Water scarcity, 
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expected to become a critical global issue by 2025, 

poses a substantial challenge, particularly in densely 

populated regions (Farooq et al., 2011). 

Drought, alongside other abiotic factors such as salt 

and heat stress, remains a leading cause of yield loss 

in wheat (Crespo et al., 2017). The increasing 

frequency and severity of droughts globally, 

attributed to climate change, are affecting wheat 

cultivation (Hussain et al., 2020). Osmotic stress 

resulting from drought can lead to significant yield 

reductions, varying by genotype, growth stage, and 

the intensity and duration of dry periods (Ladha et al., 

2016). The detrimental impact of drought is diverse, 

affecting crop patterns, agricultural output, and 

environmental conditions and creating challenges 

related to water scarcity (Li et al., 2020). Agricultural 

drought, driven by erratic precipitation and rising 

temperatures, reduces soil moisture and impacts crop 

profitability (Curtis and Halford, 2014). Considering 

Pakistan's rich wheat germplasm, efforts to study 

drought tolerance mostly involve commercial wheat 

cultivars, lacking a comprehensive understanding of 

local cultivar responses to drought (Ahmed et al., 

2020). Consequently, ongoing research aims to assess 

various Pakistani wheat germplasm to identify 

drought-tolerant genotypes for future initiatives to 

manage drought stress. Current field experiments 

evaluate physiological and phenological traits in 

wheat genotypes under drought stress to pinpoint the 

region's most resilient varieties for widespread 

adoption. 

Material and Methods 

This research experiment was conducted at the 

experimental field area of Bahauddin Zakariya 

University, Bahadur Sub-Campus Layyah, Punjab, to 

analyse the diversity of wheat genotypes under the 

effect of drought. The soil texture was sandy loam, 

with a pH of 6.5 to 7.5, a structure of 61.4 percent 

sand, 21.3 percent silt, and 16.3 percent clay, and a 

bulk density of 1.28 gcm-3. The climate in the region 

is subtropical, with warm summers and mild winters, 

with long-term average rainfall of less than 200mm. 

The investigation included seven distinct wheat 

genotypes (Chakwal, Ujala, Johar, Akbar-19, Sehar, 

Galaxy, and Ghazi). Different drought stress (Control, 

semi-drought, and Drought) was applied to wheat's 

tillering and booting stage. The experiment utilized 

the Randomized Complete Block Design (RCBD) 

layout in the experimental field area. The experiment 

was split into three sections, each being reproduced 

three times with complete randomization. Plant-to-

plant spacing was maintained at 15 cm, while row-to-

row spacing was maintained at 25 cm. In each block, 

5 plants were planted in each row of each replication. 

Irrigation, plant production, and safety procedures 

were all followed in the letter. 

 

 

 

   

   

   

Randomized Complete Block Design (RCBD) 

The following yield-related parameters i.e., Plant 

height, No. of Tillers, Spike length, Flag leaf size, No. 

of spikes, Grain weight, and Yield were recorded. 

Statistical analysis 
Microsoft excel 2016 was used for the graphical 

representation of data, correlation, and path analysis, 

while Statistix 8.1 was used to analyse variance 

(ANOVA) and probability values. 

Results and Discussion 

The results showed that all varieties are responsive to 

drought regarding the following parameters. The plant 

height shows significant differences in the 

performance of wheat genotypes. Under drought 

stress, Ghazi has the maximum plant height among all 

wheat genotypes, followed by Akbar-2019 and 

Galaxy, while Johar and Sehar have the lowest plant 

height. The analysis of variance showed significant 
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differences. Different drought conditions have a 

significant effect on the tiller capacity of plants. 

Likewise, wheat genotypes Akbar-19, Ghazi, and 

Galaxy have the highest tillers under drought stress, 

while the lowest numbers were recorded in Johar and 

Chakwal. Different drought conditions had a 

significant effect on the numbers of spikelet of plants. 

Ghazi, Akbar-19, and Galaxy have the most spikelet 

under drought conditions, while the least spike was 

noticed in Sehar. Spike length has significant 

differences among all genotypes. Results showed that 

Ghazi, Akbar-19, and Galaxy have the highest spike 

length, while Johar has the smallest spikes among the 

seven genotypes under drought stress (Table 1). In 

wheat, the flag leaf and the ear above it contribute 

75% of the final yield. Akbar-19, Ghazi, and Ujala 

genotypes have the highest flag leaf length under the 

control condition, while Akbar-19, Ghazi and Sehar 

performed well under drought stress (Ali et al., 2015; 

Ali et al., 2016; Ali et al., 2013; Ali et al., 2010ab; Ali 

et al., 2011; Ali et al., 2014). Galaxy and Ujala have 

the lowest flag leaf length under drought stress. 

Different drought stress and wheat genotypes had a 

significant effect on grain weight. Akbar-19, Ghazi, 

and Galaxy have the highest grain weight under 

drought stress, while Johar and Sehar have the lowest 

grain weight under drought stress. Analyzed data 

showed that different drought conditions had a 

significant effect on yield. Wheat sown in control 

conditions has the highest yield, while Ghazi, Akbar-

19, and Sehar were performing well under drought 

conditions (Asif et al., 2020; Balqees et al., 2020; 

Ghafoor et al., 2020; Iqbal et al., 2021; Iqra et al., 

2020ab; Naveed et al., 2012; Naseem et al., 2020; 

Waseem et al., 2014; Saeed et al., 2012). The lowest 

yield was noticed in Johar and Chakwal. Drought 

affected the morphological characteristics of wheat, 

causing lower yields (Figure 1). 

 
Figure 1. Graphical differences of seven wheat 

genotypes for Yield 

Table 1. Mean comparison of different genotypes 

Genotypes Treatment Grain 

weight 

No. of 

Spike 

Flag leaf 

length 

Spike 

length 

No. of 

Tillers 

Plant 

Height 

Yield 

Chakwal Control 493.33 13.67 17.00 16.61 3.27 70.67 20.06 

Ujala Control 545.00 13.33 17.78 16.44 3.33 72.67 19.69 

Akbar-19 Control 593.33 15.47 18.67 18.22 3.89 78.00 23.00 

Sehar Control 450.00 14.11 16.78 17.22 3.33 71.00 19.56 

Johar Control 556.67 13.78 16.89 16.44 3.33 73.00 20.50 

Galaxy Control 583.33 15.08 16.94 17.11 3.67 75.00 21.81 

Ghazi Control 621.67 16.12 18.22 18.22 4.05 79.00 25.36 

Chakwal T1 366.67 12.33 15.50 15.11 2.83 65.33 16.33 

Ujala T1 393.33 11.56 15.44 15.44 2.94 68.67 16.00 

Akbar-19 T1 460.00 13.94 16.78 15.00 3.67 72.67 18.33 

Sehar T1 326.67 12.50 15.22 15.45 3.00 65.33 17.22 

Johar T1 286.67 11.89 15.11 14.28 2.78 64.67 16.28 

Galaxy T1 380.00 13.39 14.78 15.17 3.24 70.67 15.55 

Ghazi T1 440.00 13.67 15.94 15.72 3.61 74.33 19.44 

Chakwal T2 273.33 10.33 13.67 13.22 2.27 61.33 13.00 

Ujala T2 273.33 10.11 13.56 13.44 2.34 62.67 14.00 

Akbar-19 T2 320.00 12.50 15.17 13.78 3.11 68.00 16.67 

Sehar T2 180.00 9.27 13.78 13.67 2.47 61.00 15.11 

Johar T2 256.67 10.30 13.67 12.33 2.33 60.67 12.67 

Galaxy T2 293.33 11.00 13.56 14.00 2.70 66.00 13.33 

Ghazi T2 316.67 12.39 14.56 14.67 3.00 69.00 17.39 

Correlation Analysis 

It is particularly useful in breeding because genotypic 

and phenotypic correlations establish the influence of 

environmental factors on characteristics and offer the 

link between variables, which is extremely useful for 

directly selecting high-yielding varieties and other 

key qualities (Aaliya et al., 2016; Ahmad et al., 2012; 

Ahmad et al., 2021; Ali et al., 2015; Ali et al., 2017). 

Yield has a positive and highly significant correlation 

with grain weight, flag leaf size, spike length, spikelet 

numbers, tiller, and plant height. Grain weight has a 

positive and highly significant correlation yield, flag 
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leaf size, spike length, spikelet numbers, tiller, and 

plant height. Flag leaf size has a positive and highly 

significant correlation yield, grain weight, spike 

length, spikelet numbers, tiller, and plant height. 

Spikelet numbers have a positive and highly 

significant correlation yield, grain weight, spike 

length, flag leaf size, numbers of tiller, and plant 

height. Spike length has a positive and highly 

significant correlation yield, grain weight, number of 

spikelets, flag leaf size, number of tiller, and plant 

height. Numbers of tiller has a positive and highly 

significant correlation yield, grain weight, numbers of 

spikelet, flag leaf size, spike length, and plant height. 

Plant height has a positive and highly significant 

correlation yield, grain weight, spikelet numbers, flag 

leaf size, spike length, and tiller numbers (Table 2). 

Table 2. Correlation analysis between different qualitative parameters of wheat genotypes 

Traits  FLL GW NOS NOT PH SL 

GW 0.8958** 
     

NOS 0.8403** 0.8892** 
    

NOT 0.7509** 0.7973** 0.8476** 
   

PH 0.7774** 0.8386** 0.8429** 0.8528** 
  

SL 0.8392** 0.8556** 0.8317** 0.7463** 0.7626** 
 

Y/P 0.8883** 0.8953** 0.8882** 0.8202** 0.8379** 0.8639** 

**=highly significant, FLL: flag leaf length, GW: grain weight, NOS: numbers of spikelet, NOT: numbers of tiller, 

PH: plant height, SL: spike length, Y/P: yield per plant 

Path Analysis According to Table 3, path coefficient analysis 

showed that all measured traits' direct and indirect 

effects positively affect yield. 

Table 3. Path coefficient analysis for various traits of wheat  

Traits GW NOS FLL SL NOT PH Yield 

GW 0.123 0.175 0.259 0.164 0.076 0.096 0.895 

NOS 0.109 0.197 0.243 0.160 0.081 0.096 0.888 

FLL 0.110 0.165 0.289 0.161 0.072 0.089 0.888 

SL 0.105 0.164 0.242 0.192 0.071 0.087 0.863 

NOT 0.098 0.167 0.217 0.143 0.096 0.097 0.820 

PH 0.103 0.166 0.225 0.146 0.081 0.114 0.837 

Diagonal line: direct effects, FLL: flag leaf length, GW: grain weight, NOS: numbers of spikelet, NOT: numbers of 

tiller, PH: plant height, SL: spike length, Y/P: yield per plant 

Conclusion  

The primary aim of the current study was to assess 

various wheat varieties' performance under prevailing 

drought conditions worldwide, explicitly focusing on 

Akbar-19 and Ghazi, which exhibited the highest 

yields in Layyah's arid region, indicating their 

potential benefit for farmers and breeding programs 

aiming to enhance wheat crop yield. The analysis of 

variance highlighted significant differences among 

the studied traits, indicating substantial genetic 

variation among the wheat genotypes, as observed in 

prior studies. Characteristics such as plant height, 

tillers per plant, spikelets per spike, spike length, flag 

leaf size, thousand grain weight, and grain yield 

showed variability among genotypes, aligning with 

findings from previous research. Correlation and path 

coefficient analyses revealed significant positive 

associations between grain yield and certain yield 

components, such as spike length and thousand grain 

weight. This implies that genotypes with longer spikes 

and higher grain weights tend to yield more. The 

selection of these traits could potentially boost crop 

yield. Furthermore, while thousand grain weight 

displayed significant positive correlations with 

several yield-related factors, there were varying 

associations, indicating the diverse relationships 

among yield components. Ultimately, the study 

suggested that some wheat genotypes, notably Ghazi 

and Akbar-19, performed better under drought stress, 

leading to their designation as drought-tolerant 

varieties and their inclusion in breeding programs to 

develop drought-resistant wheat genotypes. 
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