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Abstract Cotton (Gossypium hirsutum L.) is a member of the Malvaceae family and the Gossypium genus, which 

contains 50 different species. Only four of these species, however, are commercially farmed. This study aims to 

evaluate the genetic diversity of wild and cultivated cotton gene pools, as well as QTL mapping and marker-assisted 

selection activities in cotton genetics. Various marker-based approaches, including RAPD, ISSR, AFLP, SSR, and 

SNP analysis, have been used to investigate genetic diversity, genotype correlations, and map saturation in cotton. 

These technologies have also assisted genome-wide association studies (GWAS) and the finding of quantitative trait 

loci (QTLs). Furthermore, novel approaches such as linkage disequilibrium, association mapping, and genomic 

selection are applied to classic ideas such as genetic variation, QTL mapping, and marker-assisted selection (MAS). 

These genomic technologies can boost cotton productivity and meet global demand for high-yielding, high-quality 

cotton fiber by incorporating additional omics resources. 
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Introduction 

Cotton is a Malvaceae and Gossypium plant. Cotton 

has 50 species 45 diploid and 5 allotetraploid. These 

species inhabit Africa, Central and South America, 

the Galapagos Islands, the Indian subcontinent, 

Australia, Arabia, and Hawaii (Hu et al., 2021; Huang 

et al., 2021). The A, B, E, and F genomes are mostly 

found in Asia and Africa. The D genome is mostly 

found in the United States, and the C, G, and K 

genomes are mostly found in Australia. Growing four 

of the 50 species is possible: G. hirsutum, G. 

barbadense, G. arboreum, and G. herbaceum (Karaca 

et al., 2020). These farmed species have 52 or 26 

chromosomes (2n) and the genotypes AADD, AADD, 

A2A2, and A1A1 (Sabev et al., 2020). 

In the past, about one to two million years ago, 

tetraploid cotton became domesticated by crossing a 

D genome donor species (Gossypium Raimondi and 

Gossypium gossypioides) with an A genome donor 

species (Gossypium herbaceum and Gossypium 

arboreum) and then going through polyploidization 

(Abbas and Muqaddasi, 2021). This resulted in the 

production of a progenitor allotetraploid species 

known as "AD," which subsequently resulted in the 

emergence of the "AD" tetraploid species known as 

Gossypium hirsutum L. (also known as Mexican 

cotton) and Gossypium barbadense L. (also known as 

Sea Island cotton or Egyptian cotton) (Hu et al., 

2021). Although G. hirsutum is responsible for 90 

percent of the world's cotton production, G. 

barbadense is responsible for 8 percent (Hu et al., 

2019). The remaining two percent is supplied by G. 

herbaceum (also known as Levant cotton) and G. 

arboreum (also known as Tree cotton) (Aaliya et al., 

2016; Suomela et al., 2023; Viot, 2019). 

Cotton has four sets of chromosomes that make up its 

genome, which is between 2200 and 3000 megabytes. 

Because DNA from individuals of the same species 

doesn't very much, it's hard to make genetic markers 

that work well for breeding cotton (Ahmad et al., 

2012; Ahmad et al., 2021; Ali et al., 2017; Aslam et 

al., 2020). While this is still the case, creating highly 

polymorphic genetic markers is necessary for 

progress in plant breeding using marker-assisted 

programs (Ahmar et al., 2021; Ali et al., 2015; Ali et 

al., 2013; Aslam et al., 2020). Much research has been 

done on genetic markers, which are used to make 

linkage maps, study quantitative trait loci (QTL), and 

use marker-assisted selection in plants. The goals of 

this study are to (i) look at how molecular marker 
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technologies have changed over time in cotton 

genetics, (ii) look at the genetic variety that exists in 

both wild and cultivated cotton gene pools, and (iii) 

give an overview of QTL mapping and marker-

assisted selection in cotton (Kushanov et al., 2021). 

Table 1 Evaluating of Different Markers in Cotton.  

Types of 

Markers 

DNA Quantity DNA 

Sample 

Study of 

Genetics 

Price of 

markers 

Accuracy 

of 

markers 

Citations 

RFLP Higher Higher Codominant Higher Higher (Amiteye, 2021; Salisu et al., 2018) 

RAPD Lower Higher Dominant Lower Lower (Mahmood et al., 2021) 

ISSR Lower Middle Dominant Lower Middle (Zaki and Hussein, 2023), (Baran et 

al., 2023) 

SSR Lower Middle Codominant Lower Higher (Zhang et al., 2020), (Kuang et al., 

2022) 

AFLP Middle Middle Dominant Moderate Higher (Niu et al., 2022), (Baran et al., 2023) 

SNP Lower Higher Codominant Lower Higher (Park et al., 2021), (Sabev et al., 2020) 

GBS Lower Higher — Lower to 

moderate 

Higher (Diouf et al., 2018), (Diouf et al., 

2017) 

Cotton Molecular Marker Technology innovations 

Researchers think that molecular markers are more 

steady than genes because they don't have a big effect 

on biological processes and might not affect 

phenotypic features (Ormel et al., 2019). Expanding 

genetic databases has made it easier to make these 

markers, which are very important for mapping 

genomes (Ali et al., 2016; Ali et al., 2010a; Yu et al., 

2021). Their uses in plant breeding include finding 

and studying genetic differences, as well as marker-

assisted selection (MAS), linkage mapping, genomic 

fingerprinting (Shimizu et al., 2020), getting rid of 

linked genes during backcrossing, and finding traits 

that are hard to see. For example, molecular markers 

can be hybridized, polymerase chain reaction (PCR), 

or sequence-based markers, depending on how they 

work. PCR-based markers like RAPD, AFLP, SSRs, 

and ISSRs are widely used in cotton genomics 

because they work well and can be used in several 

different approaches (Sabev et al., 2020).  

Utilizing Hybridization for DNA Markers 

Restriction fragment length polymorphism (RFLP) 

markers discover differences in the sizes of DNA 

fragments produced by restriction enzymes (Tarach, 

2021). These markers detect variations in the length 

of DNA fragments generated by even a single base 

mutation in the recognition sequence of a restriction 

enzyme. They use cDNA or manufactured 

oligonucleotides as probes to construct DNA profiles 

and hybridize restricted DNA segments with a 

radioisotope-labeled probe (Cheng et al., 2022). 

RFLPs have been successfully employed to study 

crop-weed introgression and gene flow. They have 

also been widely used in cotton studies for population 

genetics, evolution, and phylogeny, with roughly 64% 

of cotton RFLP markers showing codominance. 

These markers have been quite useful in determining 

genetic diversity in upland cotton. The first cotton 

genome molecular map was created using 705 RFLP 

loci grouped into 41 linkage groups (Ujjainkar). In 

marker-assisted selection (MAS), an RFLP marker 

was also employed to validate a bacterial blight 

resistance allele (Chukwu et al., 2019). RFLP 

analysis, however, has been mainly supplanted by 

more efficient polymerase chain reaction (PCR)-

based markers due to its complexity, time-consuming 

nature, and high cost. 

Genetic Marker Identification Using PCR 

Polymerase chain reaction (PCR) replicates small 

amounts of DNA without a living organism. The 

procedure uses a DNA polymerase like Taq to read 

and synthesis a new strand of DNA in the 5-3 

direction utilizing dNTPs. PCR can amplify small 

amounts of DNA and damaged DNA (Burke and 

Lupták, 2018). PCR is a widely used process that 

consists of three major steps: denaturation, annealing, 

and extension. The detection of the resultant PCR 

products is frequently accomplished using agarose or 

polyacrylamide gels. This method is extensively used 

in genetic diversity study and DNA marker 

identification. Because of PCR's simplicity and high 

success rate, many approaches for producing PCR-

based molecular markers have been developed. 

Utilizing Random Amplified Polymorphic DNA 

(RAPD) for Genetic Analysis 

RAPD is a PCR method used to detect genetic 

changes caused by deletions or recombination events 

between specific areas of DNA. This method entails 

the amplification of DNA fragments with random 10-

base pair primers, a GC content of at least 40%, and 

the lack of palindromic sequences (Kadri, 2019). A 

specific product can be amplified if the primers 

successfully bind to the target DNA regions.  RAPD 

is used to study genetic variability in population (Niu 

et al., 2019), DNA profiling (Mnookin, 2017) and 

genotype relatedness (Handi et al., 2017). In cotton, 

RAPD has been used to distinguish genotypes 

resistant to jassids, aphids, and mites (Arora et al., 

2017) and to identify the male sterility gene marker 

(R-6592) (Sabev et al., 2020). In cotton, RAPD is 

used to evaluate genotype correlations (Ghuge et al., 

2018), discover stomatal conductance QTLs 
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(MAGWANGA et al., 2020), and create linkage 

maps. 

ISSR Analysis 

ISSRs amplify DNA segments between identical 

SSRs in opposite orientations (Simair and Simair, 

2020). As Sabev et al. stated in 2020, one method for 

detecting polymorphism in inter-SSR loci is using 

primers (16-25 bp) uniquely complementary to a 

single SSR sequence. These primers can have 

sequences ranging from di- to penta-nucleotide 

lengths (Wang et al., 2017). ISSR primers have a brief 

1-4 base flanking stretch, specifically binding to the 3' 

or 5' end. Primers anchored at the 3' end produce more 

defined bands than those anchored at the 5' end (He et 

al., 2023). The ISSR method combines AFLP and 

SSR benefits with RAPD universality. ISSR primers' 

longer sequence allows for a higher annealing 

temperature, improving band repeatability over 

RAPDs (Iqbal et al., 2023). ISSRs also create more 

pieces per primer than RAPDs. ISSRs are better than 

RAPDs for assessing crop species genetic diversity. 

ISSR uses vary by genome SSR diversity and 

frequency (WAHAB, 2017a). Gene tagging, genetic 

diversity analysis, and SSR motif discovery are 

common uses of this technology in plant improvement 

research. 

Exploring Amplified Fragment Length 

Polymorphism (AFLP) - A Useful Tool in Genetic 

Studies 

As a solution to RAPD repeatability, AFLP markers 

were developed (WAHAB, 2017b). This approach 

uses PCR to detect many loci in one reaction (Li et al., 

2017), demonstrating high genome polymorphism 

(Ulloa et al., 2017). As well as the GC content and 

genome size, the number and theme of chosen 

nucleotides in the primer can change the AFLP 

amplification counts (Ali et al., 2014; Ali and Malik, 

2021; Ali et al., 2010b; Iqbal et al., 2023). This 

method works well for studying genetic variety, 

making fingerprints, and labeling different aspects of 

crop, seed, and fiber quality (Iqbal et al., 2021). 

Because AFLP markers are very common and spread 

out widely, they can be used to map genes. AFLP has 

been used in cotton linkage maps, genetic variation 

analyses, and map saturation studies, among other 

things (Iqbal et al., 2021; Kumar et al., 2022). 

SSR Marker 

Microsatellites' short, repeated nucleotide sequences 

are prevalent in both coding and noncoding genomes. 

Different types of transferable markers are used to 

study genetic variation, make molecular maps, and 

choose markers to help with selection. Over 1000 SSR 

primers produced for cotton research have made 

microsatellites useful in cotton genetics research. 

Cotton Gen contains these primers and mapping 

information. Functional genes are linked to EST-

SSRs derived from expressed sequence tags. EST-

SSRs have less polymorphism than traditional SSRs 

but are more transferable between species and can 

offer gene expression data. CAPS microsatellites use 

RFLP and PCR to detect mutations and 

polymorphisms. Physiological and biochemical gene 

product markers can examine complicated attributes 

and identify markers. Microsatellites like EST-SSRs 

and CAPS are useful for understanding genetic 

variability and gene expression in cotton genetics 

studies. 

Exploring Sequence-Based DNA Markers in 

Genetics SNP analysis 

These are differences in an individual's genetic 

material made up of four nucleotides: A, T, C, and G. 

SNPs can be found in coding, non-coding, and 

intergenic regions, among other places. These 

differences may be the same or different words, and 

they can cause changes in an organism's appearance. 

Gene studies like linkage mapping, map-based 

cloning, and marker-assisted selection can be used 

because they are common and codominant. Finding 

SNPs in cotton, though, is hard because it has a small 

genetic basis and allotetraploid DNA (Hu et al., 

2019). With the improvement of high-throughput 

sequencing tools, it is now possible to find many 

SNPs, even in species like cotton that don't have a lot 

of molecular studies or genetic variation. Many 

research projects have been done to look into and map 

SNPs in the Gossypium genome (Ali et al., 2018). 

Scientists worldwide have also successfully made a 

70K Illumina Infinium genotyping assay-based SNP 

chip. This brand-new genotyping assay will help 

breeders, geneticists, and other experts worldwide 

with genetic studies, breeding, putting together 

genome sequences, and other things. In addition, 

Affymetrix is currently validating a Gene Chip cotton 

genome array with 239777 probe sets that encode 

21485 cotton transcripts. This will soon be ready for 

commercial use. With global collaboration, SNP chip 

development sequences came from Gene Bank, db 

EST, and Ref Seq. These technologies will help fine 

map and uncover genes for essential economic 

features in cotton and enable genomic selection 

studies, enhancing cotton breeding efficiency. 

GBS: Sequencing Genotyping methods 

GBS stands for genotyping by sequencing, which is a 

way to simultaneously find and genotype single 

nucleotide variations (SNPs) in a genome. Designed 

to make the genome less complicated, this method 

works well and quickly. A simple method for making 

a GBS library is using a single restriction enzyme to 

grab the genome sequence between restriction sites 

(Wallace and Mitchell, 2017). When using GBS, it is 

important to pick the right restriction enzyme to 

eliminate copied parts of the genome. A methylation-

sensitive restriction enzyme called "ApeKI" was used 

in the first GBS method for maize and barley to find 

the hypomethylated genome parts for sequencing 

(NYONGESA, 2017). A changed GBS method was 

also created, which uses two enzymes and a Y-adapter 

to create "uniform" GBS libraries. Adapter 1 and 

Adapter 2 were put on opposite ends of each piece. 

GBS is a flexible method that can find thousands of 
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SNPs in a single experiment. It can be used for many 

breeding goals, including population studies, genomic 

selection, genetic mapping, and characterizing 

genotypes (Shamshad and Sharma, 2018). 

Improving crop enhancement using marker-based 

methods 

Exploring Genetic Diversity in Cotton 

In the 1990s, 80 RAPD markers were used to examine 

the genetic diversity of 16 homozygous top genotypes 

that were gained through inter-specific hybridization. 

With this method, G. hirsutum and G. arboretum 

could be told apart. In a different study, 45 RAPD 

primers were used to look at 31 Gossypium species, 

subspecies, interspecific crosses, and short-lived 

cotton genotypes. The results showed that the cotton 

leaf curl virus could not infect two races. AFLP was 

also used to compare diploid and tetraploid cotton 

species by looking at differences in the ribosomal 

RNA gene. AFLP has also been used to examine the 

genetic variety of wild animals, upland cotton, and 

their offspring. It has also been used to find out how 

G. barbadense, G. arboretum, G. Raimondi, and G. 

hirsutum are related genetically. It has been found that 

SSR markers can successfully identify transcribed 

genes and show high levels of polymorphism. This 

makes them useful for studying genetic diversity in 

cotton. Many studies have successfully used SSR 

markers to examine the genetic variation between 

cotton cultivars and species, and the plants are still 

growing. Next-generation sequencing and RNA-seq 

SNPs have been used to characterize genetic 

differences in cotton species. In F2 populations of 

upland cotton cultivars, the KAS Per assay targets 

specific SNPs and determines their Mendelian 

segregation ratio. 

Cotton Production QTL Mapping for Key 

Economic Characteristics 

Quantitative trait loci, or QTLs, are genome portions 

with genes connected to a certain quantitative feature. 

Understanding QTL mapping, also called finding and 

mapping QTLs, is important for understanding the 

connection between a phenotype and a marker's 

genotype. The identification of QTLs in cotton 

germplasm has been accomplished by utilizing 

various molecular marker technologies, including 

RFLPs and RAPDs. By way of illustration, RFLPs 

were utilized in earlier research to identify fourteen 

QTLs for characteristics connected to fiber. RFLP 

mapping has also been utilized to find quantitative 

trait loci (QTLs) for various characteristics, including 

the density of stem and leaf trichome, the amount of 

gossypol present, and the amount of chlorophyll 

present. Different genetic markers, like SSRs and 

EST-SSRs, have been used to map cotton quantitative 

trait loci (QTLs). Researchers have found many QTLs 

linked to important traits like plant design, yield, and 

fiber quality using these methods. The Cotton Gene 

database has 988 QTLs for 25 traits and can give you 

access to this information. This large collection 

contains useful information that can help develop new 

marker-assisted breeding methods for cotton. 

Genome-Wide Association Studies of Cotton 

Genetic Links 

Associate mapping, which is sometimes referred to as 

linkage disequilibrium (LD) mapping, is a technique 

that is employed to analyze the variance in complex 

traits. To reach this goal, we look at how the 

recombination patterns have changed over time and as 

the population has evolved. Using this approach, non-

structured populations are subjected to phenotyping 

and genotyping to determine whether there are any 

relationships between characteristics and markers. 

Association mapping provides a greater range of 

recombination and higher resolution mapping than 

traditional linkage mapping. This is in comparison to 

the traditional linkage mapping. Abdullaev et al. 

(2017) this method has been effectively used in the 

field of cotton research, and it takes advantage of the 

genetic diversity that may be discovered in the 

collection of cotton germplasm from around the 

world. LD-based linkage mapping is increasingly 

being used, meaning that biparental QTL mapping is 

no longer the main focus. This is similar to the 

occurrence of other plant genetic resources 

simultaneously. Because of this modification, it is 

now possible to use the exsitu conserved genetic 

diversity that may be found in worldwide germplasm 

banks for cotton. Furthermore, to achieve effective 

association mapping in the cotton genome, a relatively 

minimal number of markers are required, comparable 

to the results obtained from other crops (Ademe et al., 

2017; Ali et al., 2011). The tetraploid genome of 

cotton is an interesting part of study. With a total 

recombination length of about 5,200 cm and an 

average of 400 kb per cm, 5–6 cm LD blocks are all 

needed for association mapping for different traits. To 

achieve a successful and accurate association 

mapping, this would necessitate using a maximum of 

around one thousand polymorphic markers. Because 

of recent developments in genome sequencing 

technology make it possible to gather large genotypic 

datasets, making it easier to employ association 

mapping rather than QTL mapping (Zhang et al., 

2023). 

Improvement of cotton breeding through MAS 

By using the genetics of a marker, plant breeders can 

choose plants with the features they want. This is 

called marker-assisted selection (MAS). Choosing 

plants with the right mix of certain genes is the most 

important part of plant breeding. Markers closely 

linked to these genes help breeders find plants with 

their desired genes. MAS works or doesn't work 

depending on the marker method, so making a good 

choice is important. Researchers have been using 

RAPD methods in MAS to raise seeds of different 

species, such as G. sturtianum, with and without 

glands in recent years (Hu et al., 2021). Studies have 

shown that DNA markers linked to the main QTL for 

fiber strength (QTLFS1) can be used in MAS to 
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strengthen commercial crops' fibers in segregating 

populations. To make it easier to find the main fiber 

strength QTL in BC1F4 upland cotton, some RAPD 

markers have also been changed into specific SCAR 

markers, like the SCAR 1920 marker (Sabev et al., 

2020). It was also possible to find three more markers 

connected to the CBD gene after finding SNPs on 

chromosome 10. These markers can be used 

successfully in MAS to make cotton breeding 

programs less likely to get blue disease (Conaty et al., 

2022; Waghmare, 2022). 

Analyzing the preliminary version of the Cotton 

Genome and its importance 

Recent progress in DNA sequencing has made it much 

easier to find genes and molecular markers linked to 

different features. This has opened up new ways to 

improve crops. By sequencing DNA, we can learn 

more about how different species in the Gossypium 

group are. The tetraploid cotton species (2n = 4ₑ = 52), 

namely G. hirsutum and G. barbadense, are thought to 

have come from an allopolyploidization event about 

1-2 million years ago. During this event, a D-genome 

species was the pollen parent, and an A-genome was 

the female parent (Hao et al., 2017). It is important to 

know what each constituent genome is made of to 

fully understand how sub-genomes have changed 

over time and how they relate to each other in 

developed polyploid genomes. Cotton geneticists 

think that sequencing the D-genome father, G. 

Raimondi, is important for this main reason. G. 

Raimondi is the smallest species in the Gossypium 

genus. Its genome is only 880Mb (Wu et al., 2017), 

making up about 60% of the diploid A-genome and 

40% of the tetraploid genomes (Khidirov et al., 2023). 

Putting together a physical map of the G. Raimondi 

genome has shown that it comprises parts that are high 

in both genes and repeats. 

Future Aspect 

Many nations rely on cotton cultivation for foreign 

exchange. Improving cotton fiber quantity and quality 

is a priority. Novel alleles from wild species and 

current molecular technologies are being introduced 

to improve economic features. The G. Raimondii and 

G. arboreum draft genomes are being sequenced to 

find significant features. These genomic resources can 

also identify high-throughput marker platforms such 

Select SNP arrays, which can distinguish desirable 

cotton genotypes and research genetic diversity and 

produce linkage maps. These markers are essential for 

variety development. QTL mapping has been used to 

discover cotton features such as fiber output and 

quality, drought tolerance, disease resistance, and 

insect resistance (Diouf et al., 2018). However, low 

marker density may make it difficult to clone 

causative genes. Molecular marker techniques are 

chosen based on dependability, statistical power, and 

polymorphisms. These techniques can spark a new 

"Green Revolution" in agriculture as they become 

more efficient and automated. More efficient DNA 

markers will be developed soon to help plant breeders 

and geneticists create cultivars that fulfill societal 

needs. Due to their availability and detection system 

improvements, SNP markers will impact MAS and 

mapping investigations (Sabev et al., 2020). Marker 

genotyping with GBS is predicted to grow in 

popularity. New markers and high-tech tools like 

DNA chips and microarrays will speed up the process 

of tracking and identifying genes in cotton, leading to 

faster and better varietal development. 
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